Supporting information for

Multiscale morphology design of hybrid halide perovskite through polymeric template

Sofia Masi, Aurora Rizzo, Federica Aiello, Federica Balzano, Gloria Uccello-Barretta, Andrea Listorti, Giuseppe Gigli and Silvia Colella

NMR experimental details

Optimization of MAPbI₃ concentration

NMR characterization was firstly performed with MAPbI₃ to polymer weight ratio of 36:1, in the solvent mixture THF/DMF/DMSO (3.3:1:1), according with the preparation of the blend. For each mixture, the blend was constituted by 79.94 mg of MAPbI₃ (0.129 mmol, 184 mM) and 2.19 mg (3.13 mgmL⁻¹) of polymer. However any NMR parameter of MAPbI₃ did not undergo significant changes due to the presence of polymers, which could be, anyway, explained on considering that above experimental conditions correspond to very high molar ratios of MAPbI₃ to polymer (4000:1 in the case of MAPbI₃/PS mixture). In these conditions the molar fraction of bound MAPbI₃ is too low in comparison with free molar fractions to bring about detectable parameters changes. In addition, precipitation occurred, that introduced some lack of reproducibility in data analysis.

For these reasons, MAPbI₃/polymer blends were prepared and analyzed by keeping unchanged the content of polymers and decreasing the concentration of MAPbI₃ from 184 mM (114.20 mgmL⁻¹) to 10 mM (6.20 mgmL⁻¹). Data reported in the paper are relative to this concentration.

Diffusion coefficient

Diffusion coefficients (D) represent global size-dependent parameters and on the basis of the Stokes–Einstein equation¹ [Equation (1), k is the Boltzmann constant, η is the solvent viscosity and T is the temperature in K], can be correlated to the hydrodynamics radius (r_H).

$$D = \frac{kT}{6\pi\eta r_{H}}$$

By virtue of the above dependence, diffusion coefficients are extremely sensitive to variations in the apparent molecular sizes that are produced by complexation processes.

Figure S1. Expansion of DOSY maps (600 MHz, THF/DMF/DMSO 3.3:1:1, 298 K) of P3 at different concentration: 184 mM (a), 10 mM (b) and 2 mM (c).

Figure S2. Expansion of 'H NMR (600 MHz, THF/DMF/DMSO 3.3:1:1, 298 K) of MAPbI₃ (2 mM, a) and of mixture MAPbI₃/MEH-PPV (b, molar ratio P3/MEH-PPV 0.83:1); \Diamond , DMSO-d₆; \circ , methyl of MAPbI₃; Δ , DMF-d₇.

Figure S3. Expansion of DOSY maps (600 MHz, THF/DMSO 5:2, 298 K) of (a) MAPbI₃ (2 mM) and (b) of MAPbI₃ in the presence of MEH-PPV (molar ratio MAPbI₃/MEH-PPV 176:1).

Figure S4. X-Ray diffraction pattern of (a) MAPbI₃ and MAPbI₃:polymer (b) MEH-PPV, (c) PFN, (d) PMMA, (e) PS, (f) PTAA thin films, which were exposed to ambient air.

Figure S₅. UV-vis spectra of MAPbI₃:polymer mixtures thin films.

Figure S6. SEM image of MAPbI₃ film deposited on PEDOT:PSS.

¹ a) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D.; Gale, P. A.; Steed, J. W. *Supramolecular Chemistry: From Molecules to* Nanomaterials; Gale, P.; Steed, J., Eds.; Wiley and Sons: Chichester, U.K., 2012; Vol. 2, pp. 319-330. b) Morris, G. A. *Multidimensional NMR Methods for the Solution State*; Morris, G. A.; Emsley, J. W., Eds.; Wiley and Sons: Chichester, U.K., 2010; pp. 515-532. c) Morris, G. A. *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; Wiley and Sons: Chichester, U.K., 2002; Vol. 9, pp. 35–44.