Supplementary Information

Nanocrystalline Fe-Fe₂O₃ Particle-Deposited N-doped Graphene as an Activity Modulated Pt-Free Electrocatalyst for Oxygen Reduction Reaction

Vishal M. Dhavale,^{a,b} Santosh K. Singh,^{a,b} Ayasha Nadeema,^{a,b} Sachin S. Gaikwad,^a Sreekumar Kurungot^{*,a,b}

^aPhysical and Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India, Fax: +91-20-25902636; Tel: +91-20-25902566;

E-mail: k.sreekumar@ncl.res.in

^bAcademy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India.

Figure S1: Particle size histograms of Fe-Fe₂O₃/NGr (a), and Fe-Fe₂O₃/RGO (b).

Figure S2: TEM images of $Fe-Fe_2O_3/RGO$: a) and b) are the images taken at different magnifications and (c) HR-TEM image representing the lattice fringes. The boundary of a single $Fe-Fe_2O_3$ particle is marked with the yellow dotted circle.

Figure S3: XPS of O1s of Fe-Fe₂O₃/NGr.

Figure S4: Deconvulated XPS of C1s of $Fe-Fe_2O_3/RGO$. The peak at the lower binding energy (283.54 eV) indicates the interaction of Fe and C, whereas, the peaks at 284.33 and 285.51 eV are credited to the presence of $sp^2(C=C)$ and sp^3 (C-C) carbons. Lastly, the peak at the higher binding energy of 286.35 eV indicates the presence of the oxygen functional groups on the carbon surface.

Figure S5: XPS of O1s of Fe-Fe₂O₃/RGO.

Figure S6: Deconvulated XPS of C1s of NGr. The peaks at 284.34, 285.69, 286.72, and 287.80 eV are credited to the presence of C=C, C-C, C-O and C-N bonding, respectively. Peaks at the higher binding energy provide the evidence of 'C' coordination with the 'O' and 'N'.

Figure S7: Deconvulated XPS of N1s of NGr. The peaks at 398.34, 399.45, 401.98, and 403.62 eV are assigned to the presence of pyridinic-N, pyrrolic-N, quaternary-N and N-O bonding, respectively.

Figure S8: Deconvulated XPS of O1s of NGr.

Figure S9: (a) Deconvulated XPS of C1s of RGO. The peak at 284.70 and 285.50 eV are credited to the presence of the sp^2 (C=C) and sp^3 (C-C) carbons. Lastly, the peak at the higher binding energy (287.0 eV) indicates the presence of oxygen functional groups on the carbon surface; (b) XPS of O1s of RGO.

Figure S10: Comparative cyclic voltammograms of $Fe-Fe_2O_3/RGO$, $Fe-Fe_2O_3/NGr$, NGr and RGO. Conditions: electrolyte: N_2 - saturated 0.1 M KOH and scan rate: 20 mV/s.

Figure S11: Hydrodynamic study at different rotation rates of the working electrode in O_2 -saturated alkaline electrolyte, (a) RGO, (b) NGr, (c) $Fe-Fe_2O_3/RGO$, (d) $Fe-Fe_2O_3/NGr$, and (e)Pt/C. Conditions: electrolyte: O_2 -saturated 0.1 M KOH and scan rate: 10 mV/s.

Figure S12: Accelerated durability test (ADT) of RGO in 0.1 M KOH. (a) 5000 potential cycles recorded at a scan rate of 50 mV/s in the potential window of 0.0 to 0.40 V (vs. Hg/HgO), and (b) comparative LSV curves before and after ADT, recorded at 10 mV/s.

Figure S13: Accelerated durability test (ADT) of NGr in a 0.1 M KOH. (a) 5000 potential cycles recorded at a scan rate of 50 mV/s in the potential window of 0.0 to 0.40 V (vs. Hg/HgO), and (b) comparative LSV curves before and after ADT, recorded at 10 mV/s.

Figure S14: Koutecky-Levich (K-L) plots recorded at different potentials of (a) RGO, (b) NGr, (c) Fe-Fe₂O₃/RGO, (d) Fe-Fe₂O₃/NGr and (e) Pt/C.

Figure S15: Plots representing the calculated values of the number of electrons transferred with respect to the potential of the disc electrode.

Figure S16: Comparative LSVs of $Fe-Fe_2O_3/NGr$ and Pt/C recorded at 1600 rpm. Conditions: electrolyte: O_2 -saturated 0.1 M HClO₄ and scan rate: 10 mV/s.

The obtained activity of Fe-Fe₂O₃/NGr in acidic condition is found to be less in comparison to the commercially available Pt/C. The onset potential of Fe-Fe₂O₃/NGr is found to ~ 67 mV shifted to the negative direction compared to Pt/C. Along with this, the limiting current is found to be ~5.8 and ~3.7 mA/cm² for Pt/C and Fe-Fe₂O₃/NGr, respectively. Overall, the lower activity of Fe-Fe₂O₃/NGr is mainly expected to be due to the direct exposure of the Fe-particles to the electrolyte and their subsequent leaching out issues under acid condition during the measurement. A comparison of the present data with the literature reported systems are presented in **Table S1**.

Table S1: Comparison of the electrochemical data of systems reported in the literature with our system.

Electrolyt e	Electrocat alyst	Total Nitrogen Content	% of Pyridinic-N	% of Pyrrolic-N	% of Graphitic-N	ORR onset potential (V)	Limiting current density (mA/cm ²)	Referenc e
Acid	CNG-3		36.70 wt. %	18.60 wt. %	34.40 wt. %	~0.8 V (vs. RHE)	~4.0	1
Base	NGE-1000	7 wt. %	21 wt. %	53 wt. %	26 wt. %	~0.05 V (vs. Hg/HgO)	~4.5	2
Acid	Fe- PANI/C- Mela		24.2 wt. %		41.9 wt. %	0.98 V (vs. RHE)	~6.0	3
Acid	Fe-N-C- 900	6.6 at %	61.4 %	27.9 %	10.7 %	0.8 V (vs. RHE)	~2.2	4
Base	Co-N-CNF		28.85	26.99	40.54	~-0.05 V (vs. Hg/HgO)	~3.5	5
Base	N-CNF		27.46	27.30	39.27	~0.05 V (vs. Hg/HgO)	~3.5	5
Base	Fe-N-C	3.08 at. %	1.1 %	1.82 %	0.16 %	1.05 V (vs. RHE)	~6.4	6
Base	Co-N-C	1.31 at.%	0.32 %	0.81 %	0.18 %	~0.95 V(vs. RHE)	~6.0	6
Base	NCNTa	2.35 at.%	14.83 at.%	68.20 at.%	16.96 at.%	-0.15 V (vs. Ag/AgCl)	3.19	7

Comparison of Electrochemical activity of different carbon morphologies reported in literature.

Electrolyte	Electrocatalyst	ORR onset potential (V)	Limiting current density (mA/cm ²)	Reference
	N-G-CNT	1.08 V (Vs. RHE)	~6.0	
Base	N-CNT	~0.9 V (Vs. RHE)	~5.5	8
Acid	N-G-CNT	~0.8 V (Vs. RHE)	~6.0	
	N-CNT	~0.7 V (vs. RHE)	~4.5	

Acid	PANI	-Fe/Silica Collo PANi-Fe/C	oid	~	0.84 V (Vs. RF 0.78 V (Vs. RF	IE) IE)		4.4 3.3			9
Aaid	(C:	FaCa/KP				F)		5.0			10
Aciu		Teco/KD			-0.7 V (VS. KII	L)		~5.0			10
	Acid FeCo/KB PANI/Fe/Vulcan XC PANI/Fe/Vulcan XC PANI/Fe/KJ-300J PANI/Fe/BP-2000 PANI/Fe/BP-2000 PANI/Fe/MWCNTs Base Fe ₂ O ₃ /Vulcan XC (No Nitrogen) Base NCNTa	~	0.89 V (Vs. RH	IE)	~3.8						
A .: J	PA	NI/Fe/KJ-300J		0.91 V (Vs. RHE)			~4.2				11
Aciu	PA	NI/Fe/BP-2000		().91 V (Vs. RH	E)		~4.5			11
	PAN	NI/Fe/MWCNTs	8	().91 V (Vs. RH	E)		~4.0			
Base	I	Se ₃ O ₄ /N-GAs		-0.	19 V (vs. Ag/A	gCl)					12
Acid	Fe ₂	O ₃ /Vulcan XC		V	very Poor Activ	ity		~0.1			4
Base		NCNTa		-0.	15 V (vs. Ag/A	gCl)		3.19			7
	Ele	ctrochemica	l acti	vity of	our electro	catalyst	t i.e. F	Fe-Fe ₂ O ₃ /N	lGr.		
Electro lyte	Electrocataly	st Total Nitrogen Content	Pyr	% of ridinic- N	% of Pyrrolic-N	% c Graphi Quater N	of tic-N/ nary-	ORR onset potential (V)	Limiting current density (mA/cm ²	g 2)	Reference
Base	Fe-Fe ₂ O ₃ /NC	ar 3.62 wt.%	42.5	50 wt.%	33.35 wt.%	18.75 v	wt. %	0.075 V (vs. Hg/HgO)	~7.0		Present Work
Acid	Fe-Fe ₂ O ₃ /NC	3.62 wt.	42.	.50 wt.	33.35 wt.	18.75 v	vt. %	0.633 V (vs.	~3.7		Present

%

Work

Ag/AgCl)

%

%

Cathode Electrocatalyst	Cell temperature (°C)	Max. Power Density (mW/cm ²)	Reference
Fe/N/C	60	75	6
Co/N/C	60	68	6
NpGr-72	27	50	13
N-CNT	50	37	14
MnO/GC	70	98	15
Ag/C	25	10	16
CoPc/MWCNTs	50	120	17
FePc/MWCNTs	50	60	17
Au/C	50	36	18
Ag/C	50	19	18
FeN/ CNH-900	50	35	19
Fe-Fe ₂ O ₃ /NGr	60	54.40	Present work

Table S2: Single cell performance data and comparison with literature reports.

References:

- 1. S. M. Unni, R. Illathvalappil, P. K. Gangadharan, S. N. Bhange, S. Kurugot, *Chem Commun.*, 2014, **50**, 13769.
- 2. S. M. Unni, S. Devulapally, N. Karjule, S. Kurungot, J. Mater. Chem. A, 2012, 22, 23506
- H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong, B. Zhang, Sci. Rep., 2013, DOI: 10.1038/Srep01765.
- 4. C. H. Choi, S. Y. Lee, S. Park, S. I. Woo, Appl. Cat. B: Environmental 2011, 103, 362.
- D. Shin, B. Jeong, B. S. Mun, H. Jeon, H. J. Shin, J. Baik, J. Lee, J. Phys. Chem. C 2013, 117, 11619.
- 6. J. Sanetuntikul, S. Shanmugam, Nanoscale, 2015, 7, 7644.

- 7. Z. Chen, D. Higgins, Z. Chen, Carbon, 2010, 48, 3057.
- 8. J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv., 2015. DOI: 10.1126/sciadv.1400129.
- H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Mullen, J. Am. Chem. Soc., 2013, 135, 16002.
- 10. J. Y. Cheon, T. Kim, Y. H. Choi, H. Y. Jeong, M. G. Kim, Y. J. Sa, J. Kim, Z. Lee, T. H. Yang, K. Kwon, O. Terasaki, G. G. Park, R. R. Adzic, S. H. Joo, *Sci. Rep.*, 2013, **3**, 2715.
- 11. G. Wu, K. L. More, P. Xu, H. L. Wang, M. Ferrandon, A. J. Kropf, D. J. Myers, S. Ma, C. M. Johnston, P. Zelenay, *Chem Commun.*, 2013, 49, 3291.
- 12. Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Mullen, J. Am. Chem. Soc., 2012, 134, 9082.
- 13. T. Palanisevam, M. O. Valappil, R. Illathvalappil, S. Kurungot, *Energy Environ. Sci.*, 2014, **7**, 1059.
- 14. C. V. Rao, Y. Ishikawa, J. Phys. Chem. C, 2012, 116, 4340.
- 15. J. W. D. Ng, Y. Gorlin, D. Nordlund, T. F. Jaramillo, J. Electrochem, Soc., 2014, 161, D3105.
- 16. S. M. Maheshwari, P. Sridhar, S. Pitchumani, *Electrocatalysis*, 2011, 3, 13-21.
- 17. I. Kruusenberg, L. Matisen, Q. Shah, A. M. Kannan, K. Tammeveski, Int. J. Hydrogen Energy, 2012, 37, 4406.
- S. D. Poynton, J. P. Kizewski, R. C. T. Slade, J. R. Varcoe, *Solid State Ionics*, 2010, 181, 219.
- 19. S. M. Unni, S. Ramadas, R. Illathvalappil, S. N. Bhange, S. Kurungot, J. Mater. Chem. A, 2015, **3**, 4361.