The favorite of large misorientationanglegrain boundaries in graphene

XiuyunZhang ${ }^{\text {ab }}$,ZiweiXu ${ }^{\text {a,c }, \text { QinghongYuana }}$,John Xin*a ${ }^{\text {and }}$ Feng Ding*a
a Institute of Textile and clothing, Hong Kong Polytechnic University, Hong Kong, China
${ }^{b}$ College of Physics Science and Technology, Yangzhou University, Yangzhou, 225002
c.School of Material Science\& Engineering, Jiangsu University, Zhenjiang 12013, China

Supplementary Information

Fig. S1The map of used carbon nanotube (n, m) used for constructing the studied GB structures.

Fig.S2 (a-g) GB-Sstructures at misorientation angles of $3.15^{\circ}, 6.01^{\circ}, 9.43^{\circ}, 13.17^{\circ}$,
$15.18^{\circ}, 18.73^{\circ}$ and 21.79°.

Fig.S3 (a-h) GB-S structures at misorientation angles of $36.96^{\circ}, 38.21^{\circ}$, 39.68°,
$42.10^{\circ}, 45.89^{\circ}, 48.36^{\circ}, 51.39^{\circ}$ and 54.33°.

Fig.S6 (a-g) GB-LR structures at misorientation angles of $26.93^{\circ}, 27.8^{\circ}, 30.47^{\circ}, 32.2^{\circ}$,
$33.57^{\circ}, 36.18^{\circ}, 38.2^{\circ}$ and 39.06°.

Fig.S7 (a-g) GB-LR structures at misorientation angles of $42.96^{\circ}, 45.46^{\circ}, 47.27^{\circ}$,

Fig.S8 (a-g) GB-RR structures at misorientation angles of $3.15^{\circ}, 6.4^{\circ}, 9.68^{\circ}, 11.28^{\circ}$, $13.17^{\circ}, 15.18,18.75^{\circ}$ and 21.79°.

Fig.S9. (a-d) GB-RR structures at misorientation angles of $24.18^{\circ}, 27.0^{\circ}, 27.8^{\circ}$ and

Fig. $\mathbf{S 1 0}$ (a-c) The highest occupied (HOMO) and the second highest occupied (HOMO-1) orbitals of GB-Sswithmisorientation angle of $13.17^{\circ}, 21.78^{\circ}$ and32.2 .

The interaction of two $\mathbf{5} \mid \mathbf{7}$ dislocations

According to theory of dislocations, the GB energies of these 1D defects can generally be regarded as the summation of linear segment-segment interactions, which interaction energy between two $5 \mid 7$ dislocations can be expressed as a function of their distance (R),

$$
\begin{align*}
& \in \\
& \varepsilon_{12}=-\frac{\mu\left(b_{1} g \check{\zeta}\right)\left(\stackrel{\rightharpoonup}{b_{2}} g \check{\zeta}\right)}{2 \pi} \ln \frac{R}{R_{a}}-\frac{\mu}{2 \pi(1-v)}\left[\left(b_{1} \times \stackrel{v}{\zeta}\right) g\left(b_{2} \times \stackrel{v}{\zeta}\right)\right] \ln \frac{R}{R_{a}} \tag{1}\\
& -\frac{\mu}{2 \pi(1-v) R^{2}}\left[\left(\stackrel{v}{b_{1}} \times \stackrel{\mathrm{v}}{\zeta}\right) g \stackrel{\mathrm{v}}{R}\right]\left[\left(b_{2} \times \stackrel{\mathrm{v}}{\zeta}\right) g \stackrel{\mathrm{v}}{R}\right]
\end{align*}
$$

Where $\check{b}_{1}, \check{b}_{2}$ are Burgers vectors of two dislocations; $\check{\zeta}$ represents the dislocation direction; μ is the shear modulus, v is the Poisson' radio, $\stackrel{V}{R}_{a}$ is the distance of two dislocations and $\stackrel{V}{ }$ is a separation between two dislocations. In the 1D GB structures, the Burgers vectors, \check{b}_{1} and $\stackrel{v}{2}$ are almost vertical with $\check{\zeta}$, then equation (1) can be simplified as:

$$
\begin{align*}
& \varepsilon_{12}=\frac{\mu}{2 \pi(1-v)}\left|b_{1}\right|\left|b_{2}\right| \times\left(1+\ln R-\ln R_{a}\right),\left(R_{a}=\frac{1}{\rho_{57}}\right) \\
& =\frac{\mu}{2 \pi(1-v)}\left|b_{1} \| \stackrel{\vee}{b_{2}}\right| \times\left(1+\ln R+\ln \rho_{57}\right) \tag{2}\\
& =A+B \ln \rho_{57}
\end{align*}
$$

ρ_{57} is the line density of $5 \mid 7$ dislocations. Such, the GB formation energies per unit length of these 1D GB structures can be described as a function of the line density of $5 \mid 7$ pairs:

$$
\begin{equation*}
E_{f}=\rho_{57}\left(A+B \ln \rho_{57}\right) \tag{3}
\end{equation*}
$$

