Supporting Information

Polyethylenimine-interlayered core-shell-satellite 3D magnetic

microspheres as versatile SERS substrate

Chongwen Wang^{‡ab}, Ping Li^{‡ad}, Junfeng Wang^c, Zhen Rong^a, Yuanfeng Pang^a, Jiawen Xu^{ac}, Rui Xiao^{a*} and Shengqi Wang^{ab*}

^aBeijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, PR China. E-mail: ruixiao203@sina.com.

^bCollege of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124. E-mail: sqwang@bmi.ac.cn.

^c College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, PR China.

^dNational Center of Biomedical Analysis, Beijing 100850, PR China.

‡ These authors contributed equally to this work.

Figure S1. TEM images of Fe_3O_4 @Ag microspheres synthesized with different concentration of AgNO₃: (a) 0.05 mM, (b) 0.1 mM, (c) 0.2 mM and their corresponding SEM images (d), (e), and (f), respectively.

Figure S2. SERS spectra of 10^{-5} M PATP absorbed on Fe₃O₄@Ag microspheres prepared at following concentrations of AgNO₃: a- 0.05 mM, b- 0.1 mM, and c- 0.2 mM.

Figure S3(a) Comparison of the SERS spectra of the R6G solution (10^{-5} M) from the Fe3O4@Ag microspheres with different thinkness PEI interlayer: a- 0 nm, b-1.5 nm, c- 8 nm, d- 18nm, and their corresponding SERS spectra (e-h) with ethanol wash three times. **S3(b)** Comparison of the SERS spectra of the 4-MBA solution (10^{-5} M) from the Fe3O4@Ag microspheres with different thinkness PEI interlayer: a- 0 nm, b-1.5 nm, c- 8 nm, d- 18nm, and their corresponding SERS spectra (e-h) with ethanol wash three times. **S3(b)** Comparison of the SERS spectra of the 4-MBA solution (10^{-5} M) from the Fe3O4@Ag microspheres with different thinkness PEI interlayer: a- 0 nm, b-1.5 nm, c- 8 nm, d- 18nm, and their corresponding SERS spectra (e-h) with ethanol wash three times. The spectra were recorded in the same way, and have been offset vertically for visualization

assignments	SERS Signal	Normal Raman
	In 785 nm	
$\delta CS,(a_1)$		391
$\gamma CCC,7a(a_1)$		463
$\gamma CCC, 12(a_1)$		634
$\delta CC + \gamma CCC, 18a(a_1)$	1005	1004
vCS ,7 $a(a_1)$	1076	1076
$\delta CH,9b(b_2)$	1142	1140
$\delta CH,9a(a_1)$	1172	1172
$vCS_+\delta CH$,14 $b(b_2)$	1392	
	1439	
$vCS_+\delta CH$,(3 b_2)		
$vCS_+\delta CH$,19 $a(a_1)$	1475	1482
$vCC,8a(a_1)$	1578	1586

Raman peaks of PATP and according assignments.

S1

Figure S4. Characterization of the synthesized Au@Ag NPs. (a) TEM images of 25nm Au@Ag NPs, (b) TEM images of 50 nm Au@Ag NPs and (c) UV-visible spectra of the two Au@Ag NRs. The inset shows the photograph of 25nm Au@Ag NRs (right) and 50 nm Au@Ag NRs (left).

Figure S5. UV-vis spectra of a- Fe3O4@Ag microspheres in 0.1% PVP water solution, b- CSSM (25nm Au@Ag) and c- CSSM (50nm Au@Ag) in water solution.

Figure S6. TEM images of (a) Fe₃O₄@Ag-PEI-60nm Au@Ag CSSM, (b) 70nm Au@Ag CSSM. Sparse satellites were observed on the surface of Fe₃O₄@Ag microspheres, suggesting the Au@Ag NPs larger than 55 nm could not assemble uniformly.

S7 EF calculation:

Figure S7 (a) Raman spectrum of pure PATP. (b) SERS spectrum of PATP with a concentration of 10-9M.

The SERS enhancement factor (EF) was defined as EF=(I_{SERS}/I_{bulk})(N_{bulk}/N_{SERS}), whereas N_{bulk} and N_{SERS} is the number of molecules contributed to the Raman and SERS signal, respectively, and I_{SERS} and I_{bulk} is the respective signal intensity of the related peaks. From the obtained SERS spectra of PATP and Raman spectra of solid PATP on Si substrate, the I_{SERS}/I_{bulk} is 5.42. The number of PATP molecules in Raman stimulation, N_{bulk} = π (d/2)²h^{ρ}0N_A/M₀. ρ ₀ (1.18 g/mL) and M₀ (125.19 g/mol) is the density and molar mass of melted PATP, respectively. Besides, the penetration depth of laser h is measured to be 460 µm. N_{bulk} is calculated equal to 2.26×10¹⁹. As for N_{SERS} calculation, the following procedure was used, 0.2 mg Fe₃O₄@Ag-PEI-50nm Au@Ag CSSM were added to 1 mL ethanol solution of the PATP at the concentration of 10⁻⁹ M, after vigorous sonication for 15 min, the CSSM were separated from the solution by a magnet, and then the precipitate was transferred onto a clean Si wafer, and analyzed with the Raman spectrometer. Therefore, it could be calculated by N_{SERS} is calculated equal to 6.02×10^{11} . Therefore, the N_{bulk}/N_{SERS} is calculated equal to 3.75×10^7 . Finally, the EF value of peaks at 1078 cm⁻¹ is calculated to be about 2.03 × 10⁸.