## **Supporting Information**

## Nanocomposites of AgInZnS and Graphene nanosheets as Efficient Photocatalysts for Hydrogen Evolution

Xiaosheng Tang<sup>1\*</sup>, Weiwei Chen<sup>1</sup>, Zhiqiang Zu<sup>1</sup>, Zhigang Zang<sup>1\*</sup>, Ming Deng<sup>1</sup>, Tao Zhu<sup>1</sup>, Kuan Sun<sup>2</sup>, Lidong Sun<sup>3</sup>, Junmin Xue<sup>4</sup>

<sup>1</sup> Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic

<sup>2</sup> College of Power Engineering, Chongqing University, China

<sup>4</sup>Department of Materials Science & Engineering, National University of Singapore, Singapore

Engineering, Chongqing University, Chongqing 400044, China

<sup>&</sup>lt;sup>3</sup> College of Materials Science and Engineering, Chongqing University, China



S\_Figure 1 TEM images of AgInZnS nanoparticles with different ratio (A.  $Ag_{0.01}In_{0.23}ZnS_{1.35}$ , B,  $Ag_{0.02}In_{0.23}ZnS_{1.355}$ , C,  $Ag_{0.05}In_{0.23}ZnS_{1.37}$ )



S\_Figure 2. (A) high resolution TEM image of  $(Ag_{0.04}In_{0.23}ZnS_{1.365})$  AgInZnS nanoparticles, (B)the magnified High resolution TEM image of AIZS-rGO nanocomposites.



S\_Figure 3 Hydrogen evolution rates of AIZS nanoparticles with different ratio of Ag.