## Supporting Information

## Sandwich-like Nitrogen-Doped Porous Carbon/Graphene Nanoflakes with High-rate Capacitive Performance

Yu Zhang,<sup>a, †</sup> Binglin Tao,<sup>b, †</sup> Wei Xing,<sup>\*, a, b</sup> Lei Zhang,<sup>c</sup> Qingzhong Xue,<sup>a</sup> and Zifeng Yan<sup>\*, b</sup>

<sup>a</sup>School of Science, China University of Petroleum, Qingdao 266580, P. R. China. Tel./Fax: (+) 86 532 86983579; E-mail: xingwei@upc.edu.cn;

<sup>b</sup>State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China

University of Petroleum, Qingdao 266580, P. R. China. E-mail: zfyancat@upc.edu.cn;

<sup>c</sup>School of Chemical Engineering, University of Adelaide, Adelaide SA 5005, Australia.

<sup>†</sup>Y. Zhang and B. L. Tao contributed equally to this work.



Fig. S1. FESEM image of pure PPy.



Fig. S2. (a) Selected area for elemental mapping of NPCFs-2 sample and (b), (c),

(d)Elemental mappings of C, N and O.



Fig. S3. Specific capacitance of NPCFs-2 at various scan rates from 5 to 500 mV s<sup>-1</sup>.

Specific capacitance was obtained from the CV curves according to the following equation:

$$C_{sp} = \frac{\oint I dv}{vm\Delta v}$$

where *I* is the response current (A), *m* is the total mass of electrodes (g),  $\Delta v$  is the potential range (V), and *v* is the scan rate (mV s<sup>-1</sup>).



Fig. S4. Ragone plots of RGO, NPCFs-1, NPCFs-2, and APPy-2 supercapacitors in 30 wt%

KOH aqueous electrolyte.

| Samples - | Content of different N groups (%) |      |     |     |  |  |
|-----------|-----------------------------------|------|-----|-----|--|--|
|           | N-6                               | N-5  | N-Q | N-4 |  |  |
| NPCFs-1   | 44                                | 53.8 | 0   | 2.2 |  |  |
| NPCFs-2   | 48.5                              | 42.1 | 3.1 | 6.3 |  |  |

Table S1 The relative contents of N-containing functional groups in NPCFs-1 and NPCFs-2.

Table S2. Comparison of capacitive performance of NPCFs-2 with other carbon electrodes reported in aqueous electrolyte

| Carbon materials             | Testing | Ca                            | Cp                            | Electrolyte                         | Ref.      |  |
|------------------------------|---------|-------------------------------|-------------------------------|-------------------------------------|-----------|--|
|                              | method  | (F g <sup>-1</sup> )          | (F g <sup>-1</sup> )          | (mol L <sup>-1</sup> )              |           |  |
| microporous carbon           | GCD     | 254 (0.5 A g <sup>-1</sup> )  | 140 (30 A g <sup>-1</sup> )   | H <sub>2</sub> SO <sub>4</sub> (1)  | [1]       |  |
| 3D porous graphene           | GCD     | 206 (2 A g <sup>-1</sup> )    | 185 (15 A g⁻¹)                | H <sub>2</sub> SO <sub>4</sub> (1)  | [2]       |  |
| graphene aerogel             | GCD     | 204 (0.2 A g <sup>-1</sup> )  | 140 (30 A g <sup>-1</sup> )   | KOH (6)                             | [3]       |  |
| hierarchically porous carbon | GCD     | 238 (0.2 A g <sup>-1</sup> )  | 178 (30 A g <sup>-1</sup> )   | KOH (6)                             | [4]       |  |
| hierarchically porous carbon | CV      | 239 (5 mV s <sup>-1</sup> )   | 166 (100 mV s <sup>-1</sup> ) | H <sub>2</sub> SO <sub>4</sub> (1)  | [5]       |  |
| microporous carbon fibers    | GCD     | 215 (0.2 A g <sup>-1</sup> )  | 113 (100 A g⁻¹)               | KOH (6)                             | [6]       |  |
| MOF-derived carbon           | CV      | 252 (5 mV s⁻¹)                | 159 (200 mV s <sup>-1</sup> ) | $H_{2}SO_{4}(1)$                    | [7]       |  |
| MOF-derived carbon           | GCD     | 251 (0.25 A g <sup>-1</sup> ) | 204 (0.5 A g <sup>-1</sup> )  | H <sub>2</sub> SO <sub>4</sub> (1)  | [8]       |  |
| porous carbon                | GCD     | 245 (0.05 A g <sup>-1</sup> ) | 188 (8 A g <sup>-1</sup> )    | KOH (6)                             | [9]       |  |
| porous carbon                | GCD     | 300 (0.1 A g <sup>-1</sup> )  | 228 (8 A g <sup>-1</sup> )    | Na <sub>2</sub> SO <sub>4</sub> (1) | [10]      |  |
| NPCFs-2                      | GCD     | 341 (0.1 A g <sup>-1</sup> )  | 220 (30 A g <sup>-1</sup> )   | KOH (6)                             | This work |  |

<sup>a</sup> Specific capacitance at low current density or voltage scan rate

<sup>b</sup> Specific capacitance at high current density or voltage scan rate

## Reference

- 1. D. Puthusseri, V. Aravindan, S. Madhavi and S. Ogale, *Energy Environ. Sci.*, 2014, 7, 728-735.
- 2. T. T. Li, N. Li, J. W. Liu, K. Cai, M. F. Foda, X. M. Lei and H. Y. Han, *Nanoscale*, 2015, 7, 659-669.
- X. X. Sun, P. Cheng, H. J. Wang, H. Xu, L. Q. Dang, Z. H. Liu and Z. B. Lei, *Carbon*, 2015, 92, 1-10.
- 4. P. Cheng, S. Y. Gao, P. Y. Zang, X. F. Yang, Y. L. Bai, H. Xu, Z. H. Liu and Z. B. Lei, *Carbon*, 2015, **93**, 315-324.
- J. W. Jeon, R. Sharma, P. Meduri, B. W. Arey, H. T. Schaef, J. L. Lutkenhaus, J. P. Lemmon, P. K. Thallapally, M. I. Nandasiri and B. P. McGrail, *ACS Appl. Mater. Inter.*, 2014, 6, 7214-7222.
- 6. T. Le, Y. Yang, Z. H. Huang and F. Y. Kang, J. Power Sources, 2015, 278, 683-692.
- 7. R. R. Salunkhe, Y. Kamachi, N. L. Torad, S. M. Hwang, Z. Sun, S. X. Dou, J. H. Kim and Y. Yamauchi, *J. Mater. Chem. A*, 2014, **2**, 19848-19854.
- 8. A. J. Amali, J. K. Sun and Q. Xu, Chem. Commun., 2014, 50, 1519-1522.
- B. Xu, D. F. Zheng, M. Q. Jia, G. P. Cao and Y. S. Yang, *Electrochim. Acta*, 2013, 98, 176-182.
- 10. X. M. Fan, C. Yu, J. Yang, Z. Ling and J. S. Qiu, *Carbon*, 2014, **70**, 130-141.