Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information.

The Effect of Nanocrystalline Silicon Host on Magnetic Properties of Encapsulated Iron Oxide Nanoparticles

Petra Granitzer*, Klemens Rumpf, Roberto Gonzalez-Rodriguez, Jeffery Coffer, Michael Reissner

Dr. P. Granitzer

Institute of Physics, Karl-Franzens-University Graz, Universitaetsplatz 5, A-8010 Graz, Austria, petra.granitzer@uni-graz.at Dr. K. Rumpf Institute of Physics, Karl-Franzens-University Graz, Universitaetsplatz 5, A-8010 Graz, Austria R. Gonzalez-Rodriguez Department of Chemistry, Texas Christian University, Fort Worth, TX, USA Prof. Jeffery L. Coffer Department of Chemistry, Texas Christian University, Fort Worth, TX, USA Prof. M. Reissner Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8, 1040 Vienna, Austria

Supplementary Figure 1. Energy dispersive X-ray spectra of PSi filled with Fe_3O_4 -NPs of (a) 8 nm and (b) of 5 nm. The inset shows the corresponding mapping of a cross-sectional region.

Supplementary Figure 2. Process for loading Fe_3O_4 NPs into Si NTs, consisting of: (a) physical detachment of SiNTs grown on a substrate and inversion of the NT film, followed by (b) dropwise addition of a solution of Fe_3O_4 NPs, facilitated by placing a Nd magnet underneath the film; (c) subsequent formation of the Fe_3O_4 NP-loaded SiNTs.

Supplementary Table 1. Size dependent blocking temperatures of SiNTs of 10 nm wall thickness filled with Fe3O4 NPs.

10 nm Fe₃O₄ Nanoparticles (Sigma-Aldrich)

Mean	9.61
SD	2.85
Min	6.61
Max	18.10

Supplementary Figure 3. TEM image and associated size distribution data for a commercial Fe₃O₄ NP sample (Aldrich) with stated average particle size of 10 nm.

Supplementary video.

Brief video demonstrating the ability of Fe₃O₄ nanoparticles loaded into silicon nanotubes to be manipulated by a simple bar magnet.