Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Metallated Porphyrin Based Porous Organic Polymers as Efficient Electrocatalysts

Guolong Lu, ^{[], a, b,} Youlong Zhu, ^{[], b} Kongliang Xu, ^a Yinghua Jin, ^b Zhiyong Jason Ren, ^c Zhenning Liu, ^{*,} ^a Wei Zhang^{*, b}

^a Key Laboratory of Bionic Engineering, Jilin University, Changchun 130022, P. R. China
 ^b Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
 ^c Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA

Tables and Figures

Table S1	Loading amount of CoPOP/C on glassy carbon electrode	S 3
Table S2	Loading amount of 20 wt% Pt/C on glassy carbon electrode	S 3
Table S3	Parameters for Koutecky–Levich equations	S 3
Fig. S1	FT-IR spectra of CoPOP, CoPOP-600, CoPOP-800, and CoPOP-1000	S4
Fig. S2	High resolution XPS N1s spectra of CoPOP-800	S4
Fig. S3	SEM images of CoPOP, CoPOP-600, CoPOP-800, and CoPOP-1000	S5
Fig. S4	Element mapping images of CoPOP, CoPOP-600, CoPOP-800, and CoPOP-	S5
	1000	
Fig. S5	HR-TEM images of CoPOP, CoPOP-600, CoPOP-800, and CoPOP-1000	S6
Fig. S6	PXRD patterns of CoPOP, CoPOP-600, COPOP-800, and CoPOP-1000	S6
Fig. S7	Nitrogen adsorption isotherms (77 K) and corresponding pore size distribution of CoPOP , CoPOP-600 , CoPOP-800 , and CoPOP-1000 .	S7
Fig. S8	CV curves of CoPOP/C, CoPOP-600/C, CoPOP-800/C, and CoPOP-1000/C in 0.5 M $\rm H_2SO_4$ solution	S7
Fig. S9	LSV curves for 20 wt% Pt/C at different rotation rates in RDE measurements in O_2 -saturated 0.5 M H ₂ SO ₄ solution	S8
Fig. S10	LSV curves for 20 wt% Pt/C at different rotation rates in RDE measurements in O ₂ -saturated 0.1 M KOH solution	S8
Fig. S11	CV curves of 20 wt.% Pt/C in O ₂ - and N ₂ -saturated 0.5 M H ₂ SO ₄ and 0.1 M KOH solution.	S9

Materials and measurements

All reagents and solvents were used as received from commercial suppliers unless otherwise noted. Cobalt (II) 5,10,15,20-tetrakis-(4'-bromophenyl)porphyrin¹ and tetrakis(4-ethynylphenyl)methane² were synthesized according to the published procedure.

NMR spectra were taken on Inova 400 and Inova 500 spectrometers. Solid-state cross polarization magic angle spinning (CP/MAS) NMR spectra were recorded on an Inova 400 NMR spectrometer.

The FT-IR spectra of starting materials and as-synthesized CoPOP were obtained from Thermo Nicolet Avatar-370 spectrometer using KBr pellets.

Scanning Electron Microscopy (SEM) images were recorded using a JSM-6480LV (LVSEM) at 5.0 kV. The samples were sputter coated with gold prior to the analysis.

The Quantachrome Autosorb ASiQ automated gas sorption analyzer was used to measure N_2 adsorption isotherms. The samples were activated by heating at 120 °C under vacuum for at least 22 hours prior to the analysis. Ultra high purity grade (99.999 % purity) N_2 and He, oil-free valves and gas regulators were used for all free space corrections and measurements.

Table S1. Loading amount of CoPOP/C composites on glassy carbon electrode

Molar loading of	Areal loading of Co	Areal loading of CoPOP	Areal loading of
Co (mM/cm ²)	(mg/cm ²)	(mg/cm ²)	CoPOP/C (mg/cm ²)
3.96 × 10 ⁻⁴	2.33×10 ⁻²	0.442	0.78

Table S2. Loading amount of 20 wt% Pt/C catalyst on glassy carbon electrode

Molar loading of Pt (mM/cm ²)	Areal loading of Pt (mg/cm ²)	Areal loading of 20 wt% Pt/C (mg/cm ²)
1.52×10 ⁻⁴	3×10 ⁻²	0.15

Koutecky–Levich (K-L) equations as followings were used to analyze the data from RDE measurements:

$$\frac{1}{j_{Lim}} = \frac{1}{j_{Lev}} + \frac{1}{j_k}$$
(1)

$$j_{Lev} = 0.62nFCD^{2/3}v^{-1/6}\omega^{1/2}$$
⁽²⁾

$$j_k = nFkC\Gamma \tag{3}$$

Where, *j* is the measured current density, ω is the electrode rotation rate, *F* is the Faraday constant C_0 is the bulk concentration of O_2 , D_0 is the diffusion coefficient of O_2 , *v* is the kinetic viscosity of the electrolyte, and *k* is the electron-transfer rate constant.

Table S3. Parameters for Koutecky–Levich equations.

Solution	F (C mol⁻¹)	C₀ (mol cm⁻³)	D ₀ (cm ² s ⁻¹)	ν (cm² s ⁻¹)
0.5 M H ₂ SO ₄	96485	1.1×10 ⁻⁶	1.4×10 ⁻⁵	0.01
0.1 М КОН	96485	1.2×10 ⁻⁶	1.9×10 ⁻⁵	0.01

The electron transfer numbers (*n*) were calculated from RRDE measurements based on the disk current (I $_{disk}$) and ring current (I $_{ring}$) via the following equation:

$$n = 4I_{disk} / (I_{disk} + I_{ring} / N)$$
(4)

where N is current collection efficiency of the Pt ring and equal to 25.6% in our system.

Figure S1. FT-IR spectra of CoPOP and M1 (a), CoPOP-600, CoPOP-800 and CoPOP-1000 (b).

Figure S2. High resolution XPS N1s spectra of CoPOP-800.

Figure S3. SEM images of **CoPOP** (a), **CoPOP-600** (c), **CoPOP-800** (d), and **CoPOP-1000** (e). HR-TEM image of **CoPOP** (b). The solid samples of **CoPOPs** were used directly for images a, c, d and e.

Figure S4. High Angle Annular Dark Field (HAADF) Scanning Transmission Electron Microscopy (STEM) images of **CoPOP-600** (a), **CoPOP-800** (e) and **CoPOP-1000** (i); carbon atom mapping of **CoPOP-600** (b), **CoPOP-800** (f), and **CoPOP-1000** (j); cobalt atom mapping of **CoPOP-600** (c), **CoPOP-800** (g), and **CoPOP-1000** (k); nitrogen atom mapping of **CoPOP-600** (d), **CoPOP-800** (h), and **CoPOP-1000** (i).

Figure S5. TEM images of CoPOP-600 (a), CoPOP-800 (b), and CoPOP-1000 (c); HRTEM images of a single nanoparticle in CoPOP-600 (d), CoPOP-800 (e), and CoPOP-1000 (f).

Fig. S6. Powder X-ray diffraction patterns of CoPOP, CoPOP-600, CoPOP-800 and CoPOP-1000.

Figure S7. Nitrogen adsorption isotherms (77 K) (filled symbol: adsorption; hollow symbol: desorption) and corresponding pore size distribution of **CoPOP**, **CoPOP-600**, **CoPOP-800**, and **CoPOP-1000**.

Figure S8. Cyclic voltammetry (CV) curves of **CoPOP/C**, **CoPOP-600/C**, **CoPOP-800/C**, and **CoPOP-1000/C** in 0.5 M H₂SO₄ (a); linear sweep voltammetry (LSV) curves of **CoPOP/C**, **CoPOP-600/C**, **CoPOP-800/C**, and **CoPOP-1000/C** and 20 wt% Pt/C in O₂-saturated 0.5 M H₂SO₄ (b). The scan rate was 10 mV s⁻¹ for CV measurement, and 10 mV s⁻¹ for RDE measurement.

Fig. S9. LSV curves for 20 wt% Pt/C at different rotation rates in RDE measurements in O_2 -saturated 0.5 M H_2SO_4 at 10 mV s⁻¹

and the corresponding Koutecky–Levich (K-L) plots (b). The insets in b show the average *n* values of 20 wt% Pt/C calculated from RDE against the electrode potential.

Fig. S10. LSV curves for 20 wt% Pt/C at different rotation rates in RDE measurements in O₂-saturated 0.1 M KOH at 10 mV s⁻¹ and the corresponding Koutecky–Levich (K-L) plots (b). The insets in b show the average *n* values of 20 wt% Pt/C calculated from RDE against the electrode potential.

References

- 1 X. M. Liu, Y. H. Xu, Z. Q. Guo, A. Nagai and D. L. Jiang, Chem. Commun., 2013, 49, 3233-3235.
- 2 P. Pandey, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, M. G. Kanatzidis, J. T. Hupp and S. T. Nguyen, *J. Mater. Chem.*, 2011, **21**, 1700-1703.