Supplementary Information

Poly-adenine-based programmable engineering of gold nanoparticles for highly

regulated spherical DNAzymes

Dan Zhu,^{a,#} Hao Pei,^{a,#} Jie Chao,^b Shao Su,^b Ali Aldalbahi,^c Mostafizur Rahaman,^c Lihua Wang,^a Lianhui Wang,^b Wei Huang,^b Chunhai Fan,^a and Xiaolei Zuo,^{a,*}

^{a.} Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

[#] These authors contributed equally

^{b.} Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China

^{c.} Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

* Corresponding author.

Email: zuoxiaolei@sinap.ac.cn

Study of lead-dependent enzyme activity

For DNAzyme in aqueous solution, we employed 50 nM S strand and 50 nM DNAzyme. For SNAzymes, in view of that the diffusivity of DNAzyme would be affected by the concentration of nanoparticles, the same amount of AuNPs was employed in each system. The concentration of S strand and AuNP-DNA was 50 nM and 2.5 nM, respectively. To compare the cleavage ability of each kind of DNAzyme,

the apparent cleavage velocity (k_{app}) of individual DNAzyme is calculated from equation 1.

$$k_{app} = \frac{F - F_0}{F_0 t} \cdot \frac{1}{[E]}$$

where F is the fluorescence signal during the detection process, F_0 is the initial fluorescence signal before the cleavage reaction, t is the reaction time and [E] is the concentration of DNAzyme in the system. $\triangle k_{app}$ is defined as $\triangle k_{app} = k_{app}(c) - k_{app}(0)$, where $k_{app}(0)$ is the k_{app} of the cleavage reaction in the absence of Pb²⁺ and $k_{app}(c)$ is the k_{app} of the cleavage reaction in the presence of certain amount of Pb²⁺. We calculated the initial reaction velocity in the first 10 minutes corresponding to the fluorescence enhancements. At higher concentrations of Pb²⁺, the rate of fluorescence increase reach to plateaus. The maximum apparent velocity of cleavage at the point of saturation of Pb²⁺ concentration ($\triangle k_{app,max}$) and the apparent dissociation constants ($\triangle k_{d,app}$) for Pb²⁺ binding to the DNAzyme/substrate complex in each system are calculated through equation 2.

$$\triangle k_{app} = \frac{\triangle k_{app,max} [Pb^{2+}]}{k_{d,app} + [Pb^{2+}]}$$
2

Supporting figures and tables

Fig. S1. The analysis of dynamic light scattering (DLS). The SNAzyme (B) with increased diameter than the AuNPs (A) indicated the successful immobilization of DNAzyme on AuNPs.

Fig. S2. Fluorescence enhancement with time and the apparent cleavage rate $(\triangle k_{app})$ for the cleavage of substrate at different Pb²⁺ concentrations by 8-17 DNAzyme in three polyA tailed SNAzyme systems: (A and B) polyA10 SNAzyme; (C and D) polyA20 SNAzyme; (E and F) polyA30 SNAzyme. The black curves in (B, D and F) are fit to the equation 2 to calculate $\triangle k_{app,max}$ and $\triangle k_{d,app}$.

Fig. S3. Fluorescence enhancement with time and the apparent cleavage rate $(\triangle k_{app})$ for the cleavage of substrate at different Pb²⁺ concentrations by 8-17 DNAzyme: (A and B) thiolated SNAzyme; (C and D) MCH treated thiolated SNAzyme; (E and F) individual DNAzyme. The black curves in (B, D and F) are fit to the equation 2 to calculate $\triangle k_{app,max}$ and $\triangle k_{d,app}$.

Fig. S4. Fluorescence-based progress curves of the SNAzyme-catalyzed reaction as a function of time and Lineweaver-Burk plot of the initial cleavage velocity as a function of substrate concentration in systems: (A and B) polyA10 SNAzyme; (C and D) polyA20 SNAzyme; (E and F) polyA30 SNAzyme.

Fig. S5. Fluorescence-based progress curves of the SNAzyme-catalyzed reaction as a function of time and Lineweaver-Burk plot of the initial cleavage velocity as a function of substrate concentration in systems: (A and B) thiolated SNAzyme; (C and D) individual DNAzyme.

System	$K_M(\mu M)$	K _{cat} (min ⁻¹)	K_{cat}/K_{M} (μ M ⁻¹ min ⁻¹)
DNAzyme in	2.64	1.35	0.51
solution			
polyA10-SNAzyme	2.91	0.49	0.17
polyA20-SNAzyme	2.87	0.76	0.26
polyA30-SNAzyme	2.20	1.09	0.49
Thiolated	3.06	0.45	0.15
DNAzyme based			
SNAzyme			

 Table S1. Comparison of kinetic parameters of DNAzyme on AuNPs and in solution.

 Table S2. DNA sequences and their labeling in the study.

DNA Name	sequence (5'-3')
poly A10-DNAzyme	AAAAAAAAAATTTTTCATCTCTTCTCCGAGCCGGT CGAAATAGTGAGT
poly A20-DNAzyme	AAAAAAAAAAAAAAAAAAAAAATTTTTCATCTCTTCT CCGAGCCGGTCGAAATAGTGAGT
poly A30- DNAzyme	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

	TTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT	
Thiolated DNAzyme	SH-	
	TTTTTCATCTCTTCCCGAGCCGGTCGAAATAGTGA	
	GT	
ss- DNAzyme	CATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT	
S strand	FAM-ACTCACTAT(rA)GGAAGAGATG-DABCYL	
poly A10- DNAzyme	AAAAAAAAATTTTTCATCTCTTCTCCGAGCCGGT	
-FAM	CGAAATAGTGAGT-FAM	
poly A20- DNAzyme	AAAAAAAAAAAAAAAAAAAAAATTTTTCATCTCTTCT	
-FAM	CCGAGCCGGTCGAAATAGTGAGT-FAM	
poly A30- DNAzyme	АААААААААААААААААААААААААААААААА	
-FAM	TTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-	
	FAM	
SH- DNAzyme -FAM	TTTTTCATCTCTTCCCGAGCCGGTCGAAATAGTGA	
	GT-FAM	