Supporting Information

Realisation and Advanced Engineering of True Optical Rugate Filters Based on Nanoporous Anodic Alumina by Sinusoidal Pulse Anodisation

Abel Santos^{1,2*}, Jeong Ha Yoo^{1,2}, Charu Vashisth Rohatgi¹, Tushar, Kumeria¹, Ye Wang¹ and Dusan Losic^{1,2*}

¹School of Chemical Engineering, The University of Adelaide, Engineering North Building, 5005 Adelaide, Australia ²Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005 Adelaide, Australia

*E-Mails: abel.santos@adelaide.edu.au ; dusan.losic@adelaide.edu.au

S1. Summary of Results

Table S1 compiles a comprehensive summary of the experiments carried out in our study, where the effect of the main anodisation parameters on the position of the characteristic reflection peaks of NAA-RFs was systematically analysed. To this end, a NAA-RF produced with $T_p = 650$ s, $A_J = 0.420$ mA cm⁻², $J_{Offset} = 0.28$ mA cm⁻², $N_P = 150$ pulses, $T_{An} = -1^{\circ}$ C and $t_{pw} = 0$ min was chosen as the reference structure. From this, the anodisation period (T_p), the anodisation amplitude (A_J), the anodisation offset (J_{Offset}), the number of pulses (N_P), the anodisation temperature (T_{An}) and the pore widening time (t_{pw}) were systematically modified from 450 to 1400 s ($\Delta T_P = 50$ s), from 0.105 to 0.735 mA cm⁻² ($\Delta A_J = 0.105$ mA cm⁻²), from 0.14 to 0.98 mA cm⁻² ($\Delta J_{Offset} = 0.14$ mA cm⁻²), from 100 to 300 pulses ($\Delta N_P = 50$ pulses), from -1 to 6°C ($\Delta T_{An} = 1^{\circ}$ C) and from 0 to 10 min ($\Delta t_{pw} = 2$ min), respectively.

S2. Refractive Index of Aqueous Solutions of Glucose

Figure S1 shows a fitting line between the concentration of glucose and the refractive index of the solution. This relationship was used to establish a direct correlation between the level of change in λ_{Peak} and the refractive index of the medium filling the nanopores of NAA-RFs.

S3. Estimation of $\Delta \lambda_{Peak}$ in Real-Time by RIfS

NAA-RFs were functionalised with HSA via APTES silanization using GTA as a coupling agent. The reversible binding affinity between HSA and indomethacin molecules was assessed by measuring changes in the position of the characteristic reflection peak (1st order) of NAA-RFs in real-time by RIfS. **Figure S2** shows representative RIfS spectra from which $\Delta \lambda_{Peak}$ associated with each stage of the sensing process was estimated.

Realisation and Advanced Engineering of True Optical Rugate FiltersBased on Nanoporous Anodic Alumina by Sinusoidal Pulse Anodisation

Table S1. Comprehensive summary of the effect of the different anodisation parameters on the position of the characteristic reflection peaks of NAA-RFs analysed in this study.

Analysed Parameter	Range and Step Size	Peaks	Fitting Parameters	Range of λ_{Peak}
Anodisation Period – T_P	From 450 to 1400 s	1 st Order	<i>Slope</i> = 0.67 ± 0.01 nm s ⁻¹	401 – 1036 nm
	$\Delta T_P = 50 \text{ s}$		<i>Intercept</i> = 130.21 ± 13.95 nm	(Red Shift)
			$R^2 = 0.9912$	
		2 nd Order	Slope = 0.29 ± 0.01 nm s ⁻¹	260 – 513 nm
			Intercept = 98.93 ± 7.25 nm	(Red Shift)
			$R^2 = 0.9899$	
		3 rd Order	Slope = 0.16 ± 0.02 nm s ⁻¹	278 – 347 nm
			Intercept = 109.11 ± 26.41 nm	(Red Shift)
			$R^2 = 0.8537$	
Anodisation Amplitude - A	From 0.105 to 0.735 mA cm^{-2}	1 st Order	<i>Slope</i> = 970.74 \pm 28.13 nm (mA cm ⁻²) ⁻¹	283 – 886 nm
	$\Delta A_{J} = 0.105 \text{ mA cm}^{-2}$		<i>Intercept</i> = 166.22 ± 13.21 nm	(Red Shift)
			$R^2 = 0.9950$	
		2 nd Order	<i>Slope</i> = 464.60 \pm 47.99 nm (mA cm ⁻²) ⁻¹	289 – 443 nm
			<i>Intercept</i> = 98.03 ± 28.28 nm	(Red Shift)
			$R^2 = 0.9687$	
Anodisation Offset - J _{Offset}	From 0.14 to 0.98 mA cm^{-2}	1 st Order	<i>Slope</i> = 865.48 \pm 23.83 nm (mA cm ⁻²) ⁻¹	431 – 1163 nm
	$\Delta J_{Offset} = 0.14 \text{ mA cm}^{-2}$		<i>Intercept</i> = 303.44 ± 14.92 nm	(Red Shift)
			$R^2 = 0.9955$	
		2 nd Order	<i>Slope</i> = 435.32 ± 24.27 nm (mA cm ⁻²) ⁻¹	290 – 587 nm
			<i>Intercept</i> = 152.29 ± 16.35 nm	(Red Shift)
			$R^2 = 0.9847$	
Number of Pulses - N _P	From 100 to 300 pulses	1 st Order	<i>Slope</i> = -0.97 \pm 0.11 nm pulse ⁻¹	623 – 525 nm
	ΔN_P = 50 pulses		<i>Intercept</i> = 715.37 ± 17.27 nm	(Blue Shift)
			$R^2 = 0.9740$	
			NB: Fitting from 100 to 200 pulses	
		2 nd Order	<i>Slope</i> = -0.54 ± 0.03 nm pulse ⁻¹	318 – 263 nm
			<i>Intercept</i> = 369.50 ± 4.63 nm	(Blue Shift)
			$R^2 = 0.9939$	
			NB: Fitting from 100 to 200 pulses	
Anodisation Temperature - T _{An}	From -1 to 6°C	1 st Order	<i>Slope</i> = -20.37 ± 1.57 nm ^o C ⁻¹	562 – 421 nm
	∠ <i>T_{An}</i> = 1°C		<i>Intercept</i> = 537.31 ± 5.34 nm	(Blue Shift)
			$R^2 = 0.9597$	
		2 nd Order	<i>Slope</i> = -5.26 ± 0.87 nm ^o C ⁻¹	286 – 270 nm
			<i>Intercept</i> = 280.57 ± 1.06 nm	(Blue Shift)
			$R^2 = 0.9229$	
Pore Widening Time - t _{pw}	From 0 to 10 min	1 st Order	<i>Slope</i> = -15.15 \pm 1.10 nm min ⁻¹	563 – 401 nm
	$\Delta t_{pw} = 2 \min$		<i>Intercept</i> = 560.40 ± 6.67 nm	(Blue Shift)
			$R^2 = 0.9741$	
		2 nd Order	<i>Slope</i> = -10.06 ± NA nm min ⁻¹	286 – 266 nm
			<i>Intercept</i> = 287.32 ± NA nm	(Blue Shift)
			$R^2 = NA$	
			NB: Only two points	

Figure S1. Estimation of the refractive index of aqueous solutions of glucose ($n_{Glucose}$) as a function of their concentration ([*Glucose*]).

