Supporting Information

Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties

Jingfei Zhang,^a Huimin Zhu,^a Ping Wu,^a Cunwang Ge,^b Dongmei Sun,^{*a} Lin Xu,^{*a} Yawen Tang, ^a and Yiming Zhou^a

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China

Corresponding authors: Dongmei Sun, dongmeisun@njnu.edu.cn; Lin Xu, njuxulin@gmail.com

Figure S1. TEM images of the products obtained in the presence of different amounts of Ni(NO₃)₂•6H₂O. (a)-(b) 0.10 g, (c)-(d) 0.20 g, and (e)-(f) 0.40 g.

Figure S2. N_2 adsorption-desorption isotherms (a) and pore-size distribution curve (b) of the obtained Ni@PGC nanosheets.

Figure S3. TEM image of the obtained pure 2D porous graphitic carbon (PGC) nanosheet.

Figure S4. Representative CVs of the pure 2D porous graphitic carbon (PGC) nanosheets at a scan rate of 0.1 mVs⁻¹.

Figure S5. TEM images of the as-synthesized 2D Ni@PGC nanosheets before (a) and after (b) cycling tests.