Supplementary information

Shape-controlled gold nanoparticles supported on MoS₂

nanosheets: synergistic effect of thionine and MoS₂ and its

application for electrochemical label-free immunosensing

Shao Su,^a Min Zou,^a He Zhao,^a Chengfeng Yuan,^a Yanan Xu,^a Chi Zhang,^a Lihua Wang,^b Chunhai Fan^b and Lianhui Wang^{*a}

^aKey Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

^bDivision of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

Preparation of MoS₂

 MoS_2 nanosheets were prepared using the intercalation exfoliation method developed by Joensen with some modifications.¹ Under Ar atmosphere, 0.3 g MoS_2 was intercalated with 10 mL n-butyllithium solution at room temperature for about two days. The unreacted n-butyllithium solution and the residual solvent were removed by Ar gas flow. Oxygen-free water was added to exfoliate the Li intercalated MoS_2 , and then the suspension was sonicated 1 hour to assist the exfoliation process. Finally, the aqueous dispersion of MoS_2 nanosheets was centrifuged at least twice to remove the LiOH and other soluble impurities.

FTIR spectra of MoS₂, Thi and AuNPs-Thi-MoS₂

The FTIR spectra of MoS₂, Thi and AuNPs-Thi-MoS₂ samples in the range of 4000–400 cm⁻¹ are shown in Figure S5. In the FTIR spectra of Thi, the bands around 3440 cm⁻¹ and 1640 cm⁻¹ are attributed to the stretching vibration and deformation vibration of -NH₂, 2990 cm⁻¹ are attributed to the C-H stretching vibration of Thi and the bands around 1427 cm⁻¹ were consistent with benzene rings C=C stretching vibration of Thi.² In the FTIR spectra of MoS₂, the weak peaks at about 590 cm⁻¹ is assigned to Mo-S vibration³ and the strong peaks at about 1120 cm⁻¹ is due to the stretching vibration of S=O. In the FTIR spectra of clovers-shaped AuNPs-Thi-MoS₂, the bands around 1427 cm⁻¹ are attributed to the benzene rings C=C stretching vibration of Thi, the bands around 3440 cm⁻¹ and 1640 cm⁻¹ were consistent with the stretching vibration and deformation vibration of -NH₂ on Thi, which prove the existence of Thi. All these observations demonstrate that Thi is successfully decorated to the AuNPs-Thi-MoS₂ nanocomposites.

Fig. S1 TEM image of AuNPs-MoS₂ prepared in the absence of Thi.

Fig. S2 Enlarged TEM images of AuNPs-Thi- MoS_2 nanocomposites with the addition of varying ratio of MoS_2 /Thi (A) 32:1, (B) 32:2, (C) 32:4 and (D) 32:10 with 0.2 mM HAuCl₄.

Fig. 3 TEM images of AuNPs-Thi-MoS₂ nanocomposites prepared under different ratio of MoS_2/Thi (A) 32:50 and (B) 32:100 with 0.2 mM HAuCl₄.

Fig. S4 TEM images of AuNPs prepared by adding different concentration of Thi (A) 1.8 μ M, (B) 3.6 μ M, (C) 7.2 μ M, (D) 18 μ M, (E) 90 μ M and (F) 180 μ M and 0.2 mM HAuCl₄ in the absence of MoS₂.

Fig. S5 TEM images of AuNPs-Thi-MoS₂ nanocomposites prepared by changing the concentration of $HAuCl_4$ (A) 0.05 mM, (B) 0.1 mM, (C) 0.15 mM, (D) 0.2 mM, (E) 0.4 mM and (F) 1 mM when the ratio of MoS₂/Thi was 32:4.

Fig. S6 FTIR spectrum of (a) MoS_2 , (b) pure Thi and (c) clovers-shaped AuNPs-Thi- MoS_2 nanocomposites.

Fig. S7 (A) Mo 3d XPS spectra (B) S 2p XPS spectra of clovers-shaped AuNPs-Thi-MoS $_2$ nanocomposites.

Fig. S8 HRTEM image of clovers-shaped AuNPs-Thi-MoS₂ nanocomposites.

Fig. S9 (A) Cyclic voltammograms of the electrochemical immunosensor at different scan rates (from a to 1: 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400 and 500 mV s⁻¹). (B) Plots of corresponding anodic and cathodic peak current against scan rate.

Fig. S10 Effects of (A) pH of detection solution, (B) the concentration of anti-CEA, (C) incubation time of anti-CEA and (D) incubation time of BSA on the immunosensor.

The material of sensors	Linear range (ng mL ⁻¹)	Detection limit (ng mL ⁻¹)	References
AuNPs/Chits/ CNTs	0.1-200	0.040	4
TiO ₂ -Gr/Thi/AuNPs	0.01-120	0.010	5
Thi-GS/Ag@Fe ₃ O ₄	0.050 - 16	0.015	6
GNP-Thi-GR	0.01-0.5	0.0040	7
SiO ₂ /Thi	1-100	0.34	8
rGO-TEPA	0.03-20	0.010	9
AuNP/Fe ₃ O ₄ -Chi/PB	0.1-220	0.010	10
AuNPs/MWNT-Chi	0.3-20	0.010	11
Den/AuNP/Thi	10-50	4.4	12
MGO/GHS-Thi	0.01-80	1.0	13
pChit/Thi/GNPs	0.02-160	0.080	14
AuNPs-Thi-MoS ₂	0.001-10	0.00052	This work

Table S1 The Comparison of analytical performances of the clovers-like AuNPs-decorated Thi- MoS_2 immunosensor and other reported immunosensors for CEA detection.

Abbreviation: [AuNPs] gold nanoparticles; [Chits] chitosans; [CNTs] carbon nanotubes; [TiO₂-

Gr] TiO₂-grapheme; [Thi] thionine; [GS] graphene sheet; [GNPs-Thi-GR] gold nanoparticlesthionine-reduced graphene oxide; [rGO-TEPA] reduced graphene oxide-tetraethylene pentamine; [PB] prussian blue; [Fe₃O₄-Chi] Fe₃O₄ nanoparticles-doped chitosan; [MWCNTs] multi-walled carbon nanotubes; [Den/AuNP] gold nanoparticle-encapsulated Dendrimer; [MGO] magnetic graphene nanosheets; [GHS] nanogold hollow microspheres; [pChit] porous chitosan.

References

- 1. P. Joensen, R. Frindt and S. R. Morrison, Mater. Res. Bull., 1986, 21, 457-461.
- 2. Y. He, Mater. Chem. Phys., 2005, 92, 134-137.
- 3. S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen and Y. Feng, Mater. Lett., 2012, 73, 223-225.
- 4. X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang and C. Li, *J. Phys. Chem. C*, 2010, **114**, 1963-1968
- 5. K.-J. Huang, Z.-W. Wu, Y.-Y. Wu and Y.-M. Liu, Can. J. Chem., 2012, 90, 608-615.
- 6. S. Yu, Q. Wei, B. Du, D. Wu, H. Li, L. Yan, H. Ma and Y. Zhang, *Biosens. Bioelectron.*, 2013, **48**, 224-229.
- 7. F.-Y. Kong, M.-T. Xu, J.-J. Xu and H.-Y. Chen, *Talanta*, 2011, **85**, 2620-2625.
- Y. Zhuo, R. Yu, R. Yuan, Y. Chai and C. Hong, *J. Electroanal. Chem.*, 2009, **628**, 90-96.
 D. Wu, A. Guo, Z. Guo, L. Xie, Q. Wei and B. Du, *Biosens. Bioelectron.*, 2014, **54**, 634-639.
 H. Chen, J. Tang, B. Su, G. Chen, J. Huang and D. Tang, *Anal. chim. acta*, 2010, **678**, 169-175.
- K.-J. Huang, D.-J. Niu, W.-Z. Xie and W. Wang, *Anal. chim. acta*, 2010, **659**, 102-108.
 B. Jeong, R. Akter, O. H. Han, C. K. Rhee and M. A. Rahman, *Anal. chem.*, 2013, **85**, 1784-1791.
- 13. J. Tang, D. Tang, R. Niessner, G. Chen and D. Knopp, *Anal. chem.*, 2011, **83**, 5407-5414. 14. Y. Liu, R. Yuan, Y. Chai, C. Hong, K. Liu and S. Guan, *Microchim. Acta*, 2009, **167**, 217-224.