Supplementary information

High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors

Rajesh Kumar Ulaganathan,^{a,b,c} Yi-Ying Lu,^{a,b} Chia-Jung Kuo,^{a,b} Srinivasa Reddy Tamalampudi,^{b,c,d} Raman Sankar,^e Karunakara Moorthy Boopathi,^{c,f} Ankur Anand,^{b,c,f} Kanchan Yadav,^{a,b,c} Roshan Jesus Mathew,^{b,c,f} Chia-Rung Liu,^{a,b} Fang Cheng Chou^e and Yit-Tsong Chen*^{a,b}

^aDepartment of Chemistry, National Taiwan University, Taipei 10617, Taiwan

^bInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

^cNano Science and Technology Program and Molecular Science and Technology Program, Taiwan

International Graduate Program, Academia Sinica, Nankang 11529, Taiwan

^dDepartment of Physics, National Central University, Jungli 32001, Taiwan

^eCenter for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

^fDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

*E-mail: ytcchem@ntu.edu.tw

Materials	Spectral window	Channel thickness/ length	Measurement condition	Incident power	R _λ (A/W)	<i>τ</i> ι/ <i>τ</i> t	EQE (%)	D* (Jones)	Response time	Ref.
Multi-layered SnS2	Visible	~80 nm/ 2 μm	$V_{g} = 0 V$ $V_{ds} = 2 V$	0.24 μW	8.8×10 ⁻³ (457 nm)	~3.0×10 ⁻¹	NR	2×10 ⁹	~5 µs	S 1
Multi-layered SnS2	Visible	~108 nm/ 5 μm	$V_{ds} = 10 V$	1 mW/cm ²	2 (450 nm)	~5.1×10 ¹	NR	NR	~42 ms	S2
Multi-layered GeSe	IR	57 nm/ 10 μm	$V_{ds} = 4 V$	283 mW/cm ²	3.5 (808 nm)	~9.4×10 ²	530	NR	100 ms	S 3
GeS nanoribbon	Visible	41 nm/ 5 μm	$V_{ds} = 5 V$	$0.25 \ \mu W/cm^2$	139.9 (530 nm)	~8.0×10 ³	3.37×10 ⁴	NR	850 ms	S4
Multi-layered GeS	Visible	~28 nm/ 13 µm	$V_{g} = 0 V$ $V_{ds} = 10 V$ $V_{g} = -80 V$	1.5 μW/cm ² 10	206 (633 nm) 655	~1.4×10 ⁴	4×10 ⁴	2.35 ×10 ¹³	~7 ms	This work
			$V_{ds} = 10 V$	µW/cm ²	(633 nm)					

Table S1. Summary of performance metrics of the IV- VI group-based 2D photodetectors

 V_g : back gate voltage; V_{ds} : source-drain voltage; R_{λ} : photoresponsivity; τ_l/τ_l : ratio of carrier lifetime (τ_l) to transit time (τ_t); EQE: external quantum efficiency; D*: specific detectivity; NR: not reported.

Fig. S1 (a) Elemental mapping of the as-synthesized bulk GeS crystal. (b) EDS spectrum of the bulk GeS crystal. (c) Analysis of the weight and atomic percentages of the GeS crystal reveals the stoichiometric ratio of Ge:S of $\sim 1:1$.

Fig. S2 The measured I_{ds} -V_g curve of a multi-layered GeS-FET indicates the on/off current ratio of ~10⁵.

Fig. S3 An absorption spectrum of bulk GeS crystal was observed. In the inset, the band gap of the bulk GeS crystal is estimated to be ~ 1.63 eV by fitting the measured data to a Tauc's plot.

Fig. S4 D* of a multi-layered GeS photodetector as a function of V_g was measured at $V_{ds} = 10$ V and P = 10 μ W/cm² at 633 nm.

Fig. S5 Photoswitching stability of a GeS photodetector in response to a long train (~100 cycles) of pulsed illumination at P = 12.7 mW/cm² (λ = 633 nm), V_g = 0 V, and V_{ds} = 1 V.

REFERENCES

- S1 G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou and H. Peng, *Nano Lett.*, 2015, **15**, 506.
- S2 J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang and X.-M. Meng, *Adv. Funct. Mater.*, 2015, 25, 4255.
- S3 B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok and C. H. Sow, ACS Appl. Mater. Interfaces, 2013, 5, 9594.
- S4 C. Lan, C. Li, Y. Yin, H. Guo and S. Wang, J. Mater. Chem. C, 2015, 3, 8074.