Photocatalytic bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium

V. Gomez,^{a+} J. C. Bear,^{a+}, P. D. McNaughter,^b J. D. McGettrick,^c Trystan Watson,^c Paul O'Brien,b,d Andrew R. Barron,^{a,e} and Charles W. Dunnill^{a*}

[a] Energy Safety Research Institute (ESRI), College of Engineering, Swansea University, Bay

Campus, Fabian Way Swansea, SA1 8EN, UK. E-mail: c.dunnill@swansea.ac.uk Tel: +44(0)1792

606244

[b] School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

[c] SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation and

Knowledge Centre, Central Avenue, Baglan, Port Talbot, SA12 7AX, UK.

[d] School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

[e] Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.

[†]These authors contributed equally.

1. List of samples

Rutile \downarrow / Anatase \rightarrow	Anatase	N-doped anatase	Nd-doped anatase	N and Nd doped anatase
Rutile	R/A	R/N-A	R/Nd-A	-
N-doped rutile	N-R/A	N-R/N-A	-	-
Nd-doped rutile	Nd-R/A	-	Nd-R/Nd-A	-
N and Nd doped rutile	-	-	-	N-Nd-R/N-Nd-A

Table S1. List of all the samples synthesised and their respective notations.

2. Particle size analysis by TEM

Sample	Average particle size (nm)		
Titanium(IV) oxide, anatase powder, ~325 mesh, ≥99% trace metals basis	94.1 ± 39.4		
R/A	21.5 ± 8.4		
Nd-R/Nd-A	19.4 ± 8.7		
N-R/N-A	25.4 ± 13.9		
N-Nd-R/N-Nd-A	20.6 ± 14.5		
Nd-R/N-Nd-A	19.3 ± 9.7		

Table S2. Exemplar average particle sizes by TEM. Standard deviations values are large, indicating a high degree of polydispersity in the product, primarily due to high shape anisotropy amongst synthesized particles.

3.	Compositional	analysis	by XPS
		··· ·· _ ···	

	TiO ₂	R/A	N-R/N-A	Nd-R/Nd-A	Nd-R/N-Nd-A	N-Nd-R/N-Nd-A
Data Line	0	1	2	3	4	5
Na	0.46	11.95	9.56	5.99	13.69	7.7
0	33.98	16.66	20.12	44.05	25.92	41.01
Ti	12.49	7.09	9.44	15.38	11.11	16.24
Ν	0.04	0.28	0.34	0.5	0.31	0.2
К	0.89					
С	49.32	49.02	47.65	31.03	35.22	30.27
Р	1.18					
Si	1.63					
Cl		15.02	12.88	2.26	13.06	3.35
Nd				0.78	0.67	1.24
Nd/Nd+Ti (%)				5.07	6.03	7.64
Nd/N+Nd+Ti (%)				4.68	5.54	7.01
N/N+Ti (%)	0.32	3.8	3.48	3.15	2.71	1.22
N/N+Nd+Ti (%)	0.32	3.8	3.48	3	2.56	1.13

 Table S3. Compositional and oxide % of composites analysed by quantitative X-Ray photoelectron

 spectroscopy.

Figure S1. a) Raman spectra of the powdered **R/A**, indicating a mix of both anatase (circles) and rutile (triangles) titania phases. b) Raman spectra comparing the materials of the top and bottom of the disc recovered from a fragment of sample **R/A**.

Fig. S2 Results for Rhodamine degradation; decrease in absorbance of neodymium doped samples as compared to pure titania **R**/**A** sample under UV light 365 nm. Reaction conditions: 25 °C, 5 mg/L Rhodamine B in water, 1 mg/L of solid and ambient air.

Figure S3.: Results for Rhodamine degradation; decrease in absorbance of neodymium doped samples as compared to pure titania **R/A** sample under white light. Reaction conditions: 25 °C, 5 mg/L Rhodamine B in water.