Supporting Information

Spherical Nitrogen-doped Hollow Mesoporous Carbon as an Efficient Bifunctional Electrocatalyst for Zinc-Air Battery

Lida Hadidi[†], Elaheh Davari[‡], Muhammad Iqbal[†], Tapas K. Purkait[†], Douglas G. Ivey[‡] and Jonathan G. C. Veinot^{*,†}

[†]Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 [‡]Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4

Figures

Figure S1. Energy dispersive X-ray spectrum of HMC.	S2
Figure S2. XPS survey spectrum of HMC.	S2
Figure S3. TEM bright field images of polydopamine beads (A, B).	S3
Figure S4. Nitrogen adsorption-desorption isotherms for the hollow mesoporous carbon spheres (HMC).	s S3
Figure S5. Nitrogen adsorption-desorption isotherms for the Silica@mC spheres	. S4
Figure S6. Nitrogen adsorption-desorption isotherms for the PDA beads.	S4
Figure S7. (A) LS voltammograms for Silica@mC in an O ₂ -saturated 0.1 M KOH solution at indicated rotational rates and a scan rate of 10 mV s ⁻¹ . (B) Koutecky-Levich plots for Silica@mC in the potential range of -0.3 to -0.7 V vs. Hg/HgO.	S5
solution at indicated rotational rates and a scan rate of 10 mV s ⁻¹ . (B) Koutecky-	

Levich plots for PDA beads in the potential range of -0.3 to -0.7 V vs. Hg/HgO. S5

Fig. S1. Energy dispersive X-ray spectrum of HMC.

Fig. S2. XPS survey spectrum of HMC.

Fig. S3. TEM bright field images of polydopamine beads (A, B).

Fig. S4. Nitrogen adsorption-desorption isotherms for the hollow mesoporous carbon spheres (HMC).

Fig. S5. Nitrogen adsorption-desorption isotherms for the Silica@mC spheres.

Fig. S6. Nitrogen adsorption-desorption isotherms for the polydopamine beads.

Fig. S7. (A) LSV curves for Silica@mC in an O₂-saturated 0.1 M KOH solution at indicated rotational rates and a scan rate of 10 mV s⁻¹. (B) Koutecky-Levich plots for Silica@mC in the potential range of -0.3 to -0.7 V vs. Hg/HgO.

Fig. S8. (A) LSV curves for PDA beads in an O₂-saturated 0.1 M KOH solution at indicated rotational rates and a scan rate of 10 mV s⁻¹. (B) Koutecky-Levich plots for PDA beads in the potential range of -0.3 to -0.7 V vs. Hg/HgO.