PEGylated Cu₃BiS₃ Hollow Nanospheres as a New Photothermal Agent for 980 nm-Laser-Driven Photothermochemotherapy and Contrast Agent for X-Ray Computed Tomography Imaging

Shu-Mei Zhou,^a De-Kun Ma,^{*a} Sheng-Hui Zhang,^b Wei Wang,^b Wei Chen,^a Kang Yu^{*b} and Shao-Ming Huang^{*a}

aNanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027,

P. R. China

^bDepartment of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P. R. China

Fig. S1 EDS spectrum of Cu₃BiS₃ hollow nanospheres. Ni grid was used as the sample support.

Fig. S2 XPS spectra of Cu₃BiS₃ hollow nanospheres: (a) survey spectrum, (b) core level spectrum of Bi 4f, (c) core level spectrum of Cu 2p, and (d) core level spectrum of S 2p.

Fig. S3 FT-IR spectrum of PEGylated Cu₃BiS₃ hollow nanospheres.

Fig. S4 TG curve of PEGylated Cu₃BiS₃ hollow nanospheres.

Fig. S5 The digital photo of PEGylated Cu₃BiS₃ hollow nanospheres dispersed in different solvents (a). The digital photo of Cu₃BiS₃ colloid aqueous solution after 30 minutes' standing (b).

Fig. S6 UV-vis absorption spectra of various concentrations of PEGylated Cu₃BiS₃ HNSs (a). The corresponding Beer's law plot at 980 nm (b).

Synthesis of Cu₉S₅ and CuS flower-like superstructures. In a typical process for the synthesis of Cu₉S₅ superstructures, 1 mmol of CuCl₂ were dispersed into 55 mL of ethylene glycol under vigorous stirring. The solution was refluxed at 200 °C for 1 h. Then mixed solvents of PEG 2000 (2 mL) and ethylene glycol (5 mL) containing 0.5 mmol of thioacetamide were quickly injected into the above-mentioned solution. The solution was refluxed at 200 °C for another 1.5 h. The final precipitate was separated by centrifugation and washed with deionized water and absolute ethanol for several times. Then the products were dried at 60 °C for 4 h under vacuum for further characterizations. As for the synthesis of CuS superstructure, keeping all other conditions unchanged except that the dosage of thioacetamide was increased to 1 mmol.

Fig. S7 XRD patterns of the as-synthesized products.

Fig. S8 FESEM image of the as-synthesized Cu₉S₅.

Fig. S9 FESEM image of the as-synthesized CuS.

Fig. S10 UV-vis absorption spectra of the as-synthesized Cu_9S_5 and CuS flower-like superstructures .

From the results of XRD patterns and UV-vis absorption spectra analyses and FESEM observations of the samples, it could be concluded that the obtained products were flower-like Cu_9S_5 and CuS superstructures, respectively.

Fig. S11 Temperature profiles of Cu_3BiS_3 HNSs, Cu_9S_5 and CuS superstructures aqueous solution under irradiation of a 980 nm laser.

Fig. S12 Temperature changes of Cu_3BiS_3 HNSs aqueous solution (100 µg/mg) over five laser on/off cycles under NIR laser irradiation.

Fig. S13 N_2 adsorption and desorption isotherm (a) and pore-size distribution curve (b) of PEGylated Cu_3BiS_3 HNSs.

Fig. S14 Zeta potential of the sample measured in neutral water.

Fig. S15 In vivo CT images of Balb/c mice bearing melanoma tumor: without injection of the solution of the PEGylated Cu₃BiS₃ HNSs (a) and with intratumoral injection of the solution of the PEGylated Cu₃BiS₃ HNSs (b).