Au₂₅ clusters functionalized metal-organic nanostructures for magnet targeted photodynamic/photothermal therapy triggered by a single 808 nm near-infrared light

Dan Yang, Guixin Yang, Shili Gai,* Fei He, Guanghui An, Yunlu Dai, Ruichan Lv, and Piaoping Yang*

Fig. S1 (A) XRD patterns of a) ZIF-8, b) $Fe_3O_4/ZIF-8$, c) $Fe_3O_4/ZIF-8$ -Au₂₅, and d) Fe_3O_4 . (B) The corresponding XRD patterns in 2 θ range from 10° to 40°.

Fig. S2 FT-IR spectra of (A) ZIF-8, (B) Fe₃O₄/ZIF-8, and (C) Fe₃O₄/ZIF-8-Au₂₅.

Fig. S3 N_2 adsorption/desorption isotherm and the pore size distribution of Fe₃O₄/ZIF-8-Au₂₅.

Fig. S4 CLSM image of HeLa cells incubated (A) with culture, (B) with Fe_3O_4/ZIF -8-Au₂₅ under NIR irradiation. All the cells were marked with calcein AM and PI. Scale bars for all images are 100 μ m.

Fig. S5 A digital photograph showing the experimental set-up to the cells after magnetic targeted uptake assay. The magnet was placed close to the cell culture dish and the materials were adsorbed to the surrounding of magnet.

Fig. S6 *In vitro* Hepal-6 cell viabilities incubated with Au_{25} , $Fe_3O_4/ZIF-8-Au_{25}$, $Fe_3O_4/ZIF-8$ at various concentrations with and without 808 nm laser NIR.

Project	Name	Control Group	Treatment	Ref.	units
			Group		
ALT		52	43	30.7 ± 31.3	U/L
AST		164	180	148.6 ± 73.2	U/L
ALP		137	161	144.9 ± 34.5	U/L
A/G		0.46	0.48	0.48 ± 0.02	
BUN		8.7	9.9	9.2 ± 1.2	mmol/L
WBC		5.9	8.7	6.8 ± 1.5	10 ⁹ /L
RBC		8.9	9.1	9.6 ± 1.1	$10^{12}/L$
HGB		143	152	147.3 ± 9.6	g/L
PLT		431	569	564.9 ± 146.2	10 ⁹ /L
НСТ		43.89	44.51	44.2 ± 3.4	%
MCV		49.4	48.4	45.9 ± 2.3	fL
MCH		15.0	14.8	15.3 ± 0.9	pg
MCH	С	323	326	334.3 ± 17.3	g/L

Table S1. Blood biochemistry and hematology data of female KM mice at 20 days

Notice: the data in the table is average calculated by five mice each group.