Electronic Supplementary Information (ESI) for

## Porous Palladium Coated Conducting Polymer Nanoparticles for Ultrasensitive Hydrogen Sensors

Jun Seop Lee<sup>a,b</sup>, Sung Gun Kim<sup>a</sup>, Sunghun Cho<sup>a,c</sup> and Jyongsik Jang<sup>a</sup>\*

<sup>a</sup> School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU),

599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea).

Fax: +82-2-888-7295; Tel: 82-2-880-8348; e-mail: jsjang@plaza.snu.ac.kr

<sup>b</sup> Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (USA)

<sup>c</sup> Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095 (USA)

## 1. BET surface area and BJH pore distribution of palladium architectures without CPPyNPs



Figure S1. Nitrogen adsorption-desorption isotherm and pore size distribution curves (inset) of palladium architectures without CPPyNPs.



**Figure S2**. Normalized resistance changes upon (a) sequential exposure to various concentrations of hydrogen and (b) periodic exposure to 20 ppm of hydrogen gas of the palladium architectures without CPPyNPs.

## 3. HR-TEM image of Pd@CPPy\_C16 after 100 cycle exposure of H<sub>2</sub>



Figure S3. HR-TEM image of Pd@CPPy\_C16 after 100 cycle exposure of H<sub>2</sub> gas sensing.