Supporting information to

Enabling High Solubility of ZnO in TiO₂ by Nanolamination of Atomic Layer

Deposition

Chung-Yi Su^a, Chih-Chieh Wang^b, Yang-Chih Hsueh^a, Vitaly Gurylev^a, Chi-Chung

Kei^c, and Tsong-Pyng Perng^{a,*}

^aDepartment of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 300, Taiwan

^bDepartment of Materials Science and Engineering, Feng Chia University, Taichung

407, Taiwan

^cInstrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan

Figure S1. Phase diagram of ZnO-TiO₂ system.[7]

Figure S2. (a) Atomic ratios of Zn measured by XPS in Zn-doped TiO₂ nanotubes before and after annealing at 450 °C versus precursor cycle ratio. (b) XPS survey scans of Zn-doped TiO₂ with X_Z =0.04 before and after annealing. The inset in (b) is Cl 2p XPS spectra.

Figure S3. (a) DSC traces of as-deposited amorphous TiO_2 on PC at various heating rates. (b) Kissinger plot of the DSC peaks for crystallization of amorphous TiO_2 .

Figure S4. In-situ XRD patterns of pure TiO_2 prepared by ALD heated to different temperatures.

Figure S5. Fourier reconstructed TEM images and their corresponding lattice fringe profiles of (a) TiO_2 and (b) Zn-doped TiO_2 (X_Z=0.04).

Figure S6 (a) Current-potential curves of pure TiO_2 and Zn-doped TiO_2 nanotubes by potentiodynamic scan at 10 mV/s under a 150W Xe lamp. (b) Photocatalytic decomposition of methylene blue by using pure TiO_2 and Zn-doped TiO_2 nanotubes as the photocatalysts.