Optical identification of layered MoS₂ via characteristic matrix method

Yuanxin Li, Ningning Dong, Saifeng Zhang, Kangpeng Wang, Long Zhang, Jun Wang†

Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.

†Corresponding Author: jwang@siom.ac.cn

Supplementary Information (SI)

Figures S1 (a), (b), (d) and (e) manifest that the optical contrasts are negative for 1-3L MoS₂ on SiO₂/Si in comparison to the positive contrasts of MoS₂ on quartz in the main text. Figures S1 (c) and (f) illustrate the optical contrast is affected by the gap between MoS₂ and substrate generated during the transferring process. This influence makes it difficult to identify the layer number of MoS₂ using this OM method. The optical contrasts of different layer MoS₂ in Fig. S1 have been summarized in Table S1.

Fig. S1 (a) Optical microscopy (OM) image of CVD grown monolayer (1L) and two-layer (2L) MoS_2 on 300 nm SiO_2/Si in our experiments. (b) The copy of an OM image in Ref. [1]. (c) The CVD MoS_2 on high reflective mirror transferred from SiO_2/Si substrate. (d) - (f) are the pixels intensity curves measured by ImageJ cross the yellow arrows in (a) - (c), respectively.

Sample	MoS ₂ layer number	I _{exp} (a.u.)	I _{exp} (MoS ₂)-I _{exp} (substrate)	C _{exp}
(a)	0	142.0	-	-
	1	127.0	-15	-0.1056
	2	117.5	-24.5	-0.2085
(b)	0	191.5	-	-
	1	181.5	-10	-0.0522
	2	162.0	-29.5	-0.1540
	3	151.0	-40.5	-0.2115
(c)	0	146.0	-	-
	X	140.5	-5.5	-0.0377
	у	135.0	-11	-0.0753

Table S1. The optical contrasts of different layer MoS_2 in Fig. S1. (x and y mean the number of layers cannot be identified.)

Figure S2 (a) shows the difference of complex refractive index between 1L and bulk MoS_2 reported in Ref. [2]. After considering this difference, the calculated optical contrast of $MoS_2/G/SiO_2/Si$ has an obvious distinction from the one in main text. As shown in Fig. S2 (c), the overall curves have dropped significantly comparing the ones in Fig. 2 (e), and the peak at ~620 nm reaches up only to ~0.42 comparing with ~0.6 for 0.3 and 0.09 µm SiO₂. The color counter plots also has an obvious distinction from Fig. 2 (f).

Fig. S2 (a) the real and imagery part of complex refractive index of 1L (n_{1L} , k_{1L}) and bulk (n_{bulk} , k_{bulk}) MoS₂. (b) The real (n_{Si}) and imagery part (k_{Si}) of complex refractive index of Si. (c) The calculated optical contrasts of MoS₂/G/SiO₂/Si system for 0.09, 0.2, 0.3 µm SiO₂ using the complex refractive index of 1L MoS₂. (d) Color counter plots of the contrast as a function of the thickness of SiO₂ and incident wavelength for the MoS₂/G/SiO₂/Si.

Fig. S3 The linear relationship between R_{theor} and I_{exp} calculated by using N_{bulk} as the complex refractive index of MoS_2 .

Figure S4 shows the comparative results of optical contrast calculated using N_{1L} . It can be seen from (c) that the linear relationship between Ctheor and Cexp deviate from the direct ratio comparing with Fig. 3 (f).

Fig. S4 Optical contrast calculation using complex refractive index of monolayer MoS_2 : (a) color counter plots of the contrast as a function of the layer number of MoS_2 and the incident wavelength; (b) wavelength-dependent contrast of 1–4 layers of MoS_2 on quartz; (c) linear fitting of C_{exp} and C_{theor} .

Calculation method

In this part, we summarized the process of calculating the optical contrast of different layer MoS_2 on quartz using the characteristic method.³

The first step is to obtain the characteristic matrix of 1L MoS₂.

$$M_{1L_MoS2} = \begin{bmatrix} A & B \\ C & D \end{bmatrix},\tag{S1}$$

where:

$$A = \cos(\delta_{MoS2}), \tag{S2}$$

$$B = j \cdot \sin(\delta_{MoS2}) / \eta_{MoS2}, \tag{S3}$$

$$C = j \cdot \sin(\delta_{MoS2}) \cdot \eta_{MoS2},\tag{S4}$$

$$D = \cos(\delta_{MoS2}), \tag{S5}$$

$$\delta_{MoS2} = 2\pi \cdot N_{MoS2} \cdot d_{MoS2} \tag{S6}$$

$$\eta_{MoS2} = \sqrt{\frac{\varepsilon_0}{\mu_0} \cdot N_{MoS2}}$$
(S7)

 N_{MoS2} is the wavelength-dependent complex refractive index of MoS₂ (Fig. S2 (a)). For monolayer, $N_{1L} = n_{1L} - jk_{1L}$; for bulk, $N_{bulk} = n_{bulk} - jk_{bulk}$. ε_0 is the permittivity of vacuum (8.854187817e-12) and μ_0 is the permeability of vacuum (1.2566370614e-6). d_{MoS2} is the thickness (0.7 nm) of monolayer MoS₂.

The second step is to obtain the characteristic matrix of film system.

÷

For 1L MoS₂: $M = M_{1L_MoS2}$ (S8)

For 2L MoS₂:
$$M = M_{1L_MoS2} * M_{1L_MoS2} = M_{1L_MoS2}^2$$
 (S9)

For 3L MoS₂:

$$M = M_{1L_{MOS2}}^{3}$$
(S10)

It is easily to get the characteristic matrix of a multilayer system no matter how many layers there are. As for a heterostructure as shown in Fig. 2 (d) – $MoS_2/G/SiO_2/Si$, the characteristic matrix of the system can be calculated as follows:

$$M = M_{1L_{MOS2}} * M_{G} * M_{SiO2}$$
(S11)

 M_G and M_{SiO2} is the characteristic matrix of graphene and SiO₂, respectively, which can be obtained using S1-S5. In our calculation, the complex refractive index of graphene is (2.6-1.3j); the refractive index of SiO₂ is:

$$N_{SiO2} = \sqrt{1 + \frac{0.6961663}{1 - (0.0684043/\lambda)^2} + \frac{0.4079426}{1 - (0.1162414/\lambda)^2} + \frac{0.8974794}{1 - (9.896161/\lambda)^2}}$$
(S12)

The final step is to calculate the reflectivity and optical contrast.

$$r = \frac{(A + B \cdot \eta_G) \cdot \eta_0 - (C + D \cdot \eta_G)}{(A + B \cdot \eta_G) \cdot \eta_0 + (C + D \cdot \eta_G)}$$
(S13)

The reflection coefficient of film:

The reflectivity of film:

$$R = r \cdot r^* \tag{S14}$$

$$r_0 = \frac{N_0 - N_G}{N_0 + N_G}$$
(S15)

The reflectivity of substrate:

$$R_0 = r_0 \cdot r_0^{*}$$
(S16)

$$\eta_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}} \cdot N_0 \tag{S17}$$

$$\eta_G = \sqrt{\frac{\varepsilon_0}{\mu_0}} \cdot N_G \tag{S18}$$

$$Contrast = \frac{R - R_0}{R_0}$$
(S19)

Optical contrast:

 N_0 is the refractive index of air ($N_0=1$); N_G is the wavelength-dependent refractive index of the substrate. For MoS₂ on quartz, N_G is N_{SiO2} (S12); for MoS₂/G/SiO₂/Si, N_G is the wavelength-dependent complex refractive index of Si (Fig. S2 (b)).

In addition, we use the Eq. (5) in to calculate the reflectivity of the quartz and the 1-4L MoS₂ under the continuous spectrum (Fig. 3 (c)). Because the function of S (λ) and R (λ) were unknown, we used the numerical integration (S20) to carry out the calculation.

The reflectivity under continuous spectrum:

$$R = \frac{\sum_{i=1}^{n} S(\lambda_i) \cdot R(\lambda_i) \cdot \Delta \lambda}{\sum_{i=1}^{n} S(\lambda_i) \cdot \Delta \lambda}$$
(S20)

And the contrast under continuous spectrum can be deduced from Eq. S19.

Reference

- I. Bilgin, F. Liu, A. Vargas, A. Winchester, M. K. L. Man, M. Upmanyu, K. M. Dani, G. Gupta, S. Talapatra, A. D. Mohite and S. Kar, ACS Nano, 2015, 9, 8822-8832.
- 2 H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie, W. Wang and L. Dai, Sci Rep, 2015, 5, 8440.
- 3 M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 1964, Page 54.