Supplementary Information

Opening the band gap of graphene through silicon doping for improved performance of graphene/GaAs heterojunction solar cells

S. J. Zhang,^{a,b} S. S. Lin,^{*a,b} X. Q. Li,^{a,b} X. Y. Liu,^c H. A. Wu,^c W. L. Xu,^{a,b} P. Wang,^{a,b} Z. Q. Wu,^{a,b} H. K. Zhong^{a,b} and Z. J. Xu^{a,b}

^aCollege of Microelectronics, Zhejiang University, Hangzhou, 310027, China.

^bCollege of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.

^cDepartment of Modern Mechanics, Chinese Academy of Science Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230000, China.

*Corresponding Author. Email: shishenglin@zju.edu.cn

Figure S1. (a) Raman spectra of SiG with Si concentration of 2.7 at.% and 4.5 at.% on SiO₂/Si substrate. (b)-(d) XPS spectra of SiG with Si concentration of 2.7 at.% and 4.5 at.%, respectively.

Figure S2. UPS spectra of SiG with different Si concentration, where we can see that the work function of SiG with the concentration of 2.7 at.%, 3.4 at.% and 4.5 at.% is 4.63 eV, 4.63 eV and 4.75 eV, respectively, while that of graphene is 4.5 eV.

Figure S3. (a) The dark current density-voltage (J-V) curve of SiG and graphene/GaAs solar cells. (b) The current density-voltage (J-V) curve of current density-voltage (J-V) curves of the solar cell with SiG and graphene under AM1.5 illumination at 100 mW/cm².

Figure S4. PCE of SiG /GaAs solar cells with different silicon concentration.

Figure S5. EQE of graphene/GaAs and SiG/GaAs solar cells

Figure S6. EQE of graphene/GaAs and SiG/GaAs solar cell

Table S1. Different parameters between SiG and graphene/GaAs solar cells.						
	$J_{\scriptscriptstyle SC}$	V_{oc}	FF	PCE	ϕ_{SBH}	n
	(mA/cm^2)	(V)	11	(%)	(eV)	1
Graphene/GaAs	936	0.57	53.8	2 87	0.76	2 37
(pink line)	9.50	0.57	55.0	2.07	0.70	2.51
Graphene/GaAs	9.97	0.58	47.4	2.74	0.75	2.30
(red line)						
SiG/GaAs	11.15	0.64	53.9	3.97	0.83	2.05
(blue line)						
SiG/GaAs	12.02	0.64	517	2.00	0.92	2.05
(green line)	12.03	0.04	31./	3.98	0.83	2.03

Figure S7. (a)-(b) The dark current density-voltage (J-V) and fitting curves of SiG and graphene/GaAs solar cells in the voltage range from -0.5 V - 1V and -0.25 V - 0.55 V, respectively.

Figure S8. Synthesizing process of SiG sheet.