Supporting Information

Improving photocatalytic hydrogen production of Ag/g-C₃N₄ nanocomposites by dye-sensitization under visible light irradiation

Jiayi Qin,^a Jingpei Huo,^b Piyong Zhang,^b Jian Zeng,^a Tingting Wang^b and Heping Zeng^{*ab}

^a Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China.

^b State Key Laboratory of Luminescent Materials and Devices, Institute of Functional Molecules, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China

*Corresponding Author E-mail: <u>hpzeng@scut.edu.cn</u>; fax: 8620-87112631.

Fig. S1 TEM images provided for size distribution of Ag nanoparticles in 3SCN.

Samples	N%	C%	Н%	C/N
g-C ₃ N ₄	58.9	33.09	1.405	0.655
1SCN	57.81	32.53	1.886	0.656
3SCN	56	31.31	1.781	0.652
5SCN	54.6	30.68	1.784	0.656
7SCN	53.5	30.08	1.88	0.656
9SCN	53.2	29.91	1.643	0.656

Table S1 Elemental composition of the CN in all the samples.

Fig. S2 TGA curves of pure g-C₃N₄, 1SCN, 5SCN and 9SCN. Inset shows the amplified curves of pure g-C₃N₄ and 9SCN.

Group	1.60 mg mL ⁻¹	g-	3%Ag/g-C ₃ N ₄	Sacrificial		Water	PEG 2000	Fluorescein
	AgNO ₃ (mL)	C_3N_4	(mg)	agent (mL)		(mL)	(g)	(mg)
		(mg)		TEOA	EG			
1	5.00	_	_	10.0	_	60.0	1.0	_
	5.00	_		0	_	70.0	1.0	
2	0.15	4.9		10.0	_	60.0	1.0	_
	0.15	4.9		0	_	70.0	1.0	_
3	_	_	5.0	10.0	_	60.0	1.0	5.0
	_	_	5.0	0	_	70.0	1.0	5.0
	_	_	5.0	—	10.0	60.0	1.0	5.0

Table S2 Contrast experiments for photocatalytic hydrogen generation.

Fig. S3 Recycling experiment of 3SCN (0.005 g) for photocatalytic hydrogen production in an aqueous solution (70 mL) containing triethanolamine (10 mL) as the sacrificial agent under sunlight irradiation (irradiation time = 20 h).

Fig. S4 Effect of amount of fluorescein on photocatalytic hydrogen evolution of 3SCN.

Fig. S5 Powder PXRD patterns of 3SCN (left) and FTIR spectra of 3SCN-Fluorescein (right) before (black line) and after photocatalytic reactions (blue line).

Fluorescein + sunlight
$$\longrightarrow h_{HOMO}^+ + e_{LUMO}^-$$
 (1)

$$g - C_3 N_4 + \text{sunlight} \longrightarrow h_{vb}^+ + e_{cb}$$
 (2)

$$e_{\rm cb}$$
 (3)

$$cb \longrightarrow e_{Ag}$$
 (4)

$$e_{Ag} + \text{sunlight} \longrightarrow e_{SPR}$$
 (5)

Fig. S6 The specific process of H₂ production.

e

Both fluorescein and g-C₃N₄ can be excited by sunlight (equation (1), (2)), and then electrons from fluorescein were injected into CB of g-C₃N₄ easily with the help of SPR (equation (3)). Subsequently, the excited electrons on g-C₃N₄ were trapped by Ag nanoparticles (equation (4)). A very small amount of water can react with the h_{vb}^+ of g-C₃N₄ to form H⁺ and \cdot OH¹ and H⁺ acquires electrons on Ag nanoparticles to generate H₂. This is why a little hydrogen evolution could be observed without sacrificial agent in the above experiments. Most of the holes are consumed by TEOA (equation (6)), promoting the separation of photogenerated electrons and producing more H⁺ to participate in the following reaction. Sequentially, two H⁺ obtain electrons reinforced by SPR effect (equation (5)) on the surface of Ag nanoparticles to form H₂ (equation (7)).

Fig. S7 Photocatalytic hydrogen production testing system.

References

1 E. Z. Liu, L. M. Kang, Y. H. Yang, T. Sun, X. Y. Hu, C. J. Zhu, H. C. Liu, Q. P. Wang, X. H. Li and J. Fan, *Nanotechnology*, 2014, **25**, 165401.