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S1 Framework for Simulating Wavy Aligned Nanofibers in Three-
Dimensions

Fig. S1 Unit cell used in the analysis defined using the average displacement in the x — y plane (— Ar) and
10 nodes in the Z direction (— Az). Ar and Az are tied to the amplitude (a) and wavelength (A1) from the
waviness ratio (w = a/A) which is used to simulate the morphology of the CNTs in three dimensions. The
radius of curvature (R.) is evaluated using the unit cell, and is used to approximate the maximum CNT
volume fraction that the simulation can be used to study.

To define the unit cell used in the analysis, one has to consider two displacements: the x — y plane displace-
ment (— Ar), i.e. the two-dimensional random walk; and the displacement in the Z direction (— Az), i.e. the
nodal displacement. Each unit cell was comprised of 10 nodes whose Z separation has a magnitude of 0.054
(— 0.5A for 10 nodes), where A is the characteristic wavelength of the waviness from the waviness ratio
(w). See Fig. S1 inset for illustration of the unit cell used in this analysis. Using the geometry of the unit
cell shown in Fig. S1, Ar, Az, and the local radius of curvature of the CNT (R.) from the intersecting chord
theorem can be defined as follows:

Ar=x(w)A (Sla)

Az = () @) (S1b)
Re=05(ars A S1

= <r+16Ar> (51e)

where x (w) is a factor that relates the average of the displacement of the CNTs in the x —y plane, a stochastic
quantity, to the deterministic w, and {(w) connects the separation of the nodes that bound the unit cell in
the Z direction, a quantity that is varied to control the average stochastic tortuosity of each wavy CNT (see
eqn S1), to the deterministic w. To approximate ) (w), the average displacement of a CNT in the x — y plane
is evaluated (see Fig. S2a) leading to the following functional forms:

x(w) =azw (S2a)
E(w) =as(w) 4 ¢4 (S2b)

where a3 = 0.8794 (coefficient of determination R? = 0.9999); and as = —0.0748, by = 0.6459, and ¢4 =
0.4260 (R? = 0.9962). The fits in eqn S2 begin to deviate significantly from the simulation data at w > 0.3,
an effect that originates from interactions with the simulation box that confines each CNT and prevents
the CNTs from venturing outside of their confining box. This forces the CNTs to be non-interacting, and
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Fig. S2 Factors that link the average x — y plane displacement () (w)) and node separation in the Z direction
(& (w)) to the waviness ratio (w). (a) x(w) scaling with w demonstrating that CNT interactions with the
hard boundaries that define the confining volume are significant at w < 0.3 where x(w) transitions from a
linear scaling (see eqn S2a) to a power scaling. (b) {(w) scaling with w demonstrating that CNT-boundary
interactions are significant at w Z 0.3 where {(w) transitions from a power scaling (see eqn S2b) to a linear
scaling.

ensures that the system can be treated as dilute. Such an approximation is likely reasonable when the CNTs
are not all in bundles, i.e. in CNT volume fractions that are far below the theoretical maximum of ~ 83.45%
CNTs. Since the CNT-CNT electrostatic interactions are not well understood, and require further study to
properly simulate and model, this study was limited to w < 0.3 where ) (w) is a constant and {(w) varies by
< 10%.
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S2 Scaling of Waviness with Carbon Nanotube Volume
Fraction

As discussed in the main text, the waviness ratio (w) of the aligned carbon nanotubes (CNTs) was approxi-
mated from scanning electron microscope (SEM) images of the cross-sectional morphology of CNT arrays
at a variety of CNT volume fractions (V¢) for 1% < Vi < 20%. At each Vi, w was approximated from 30
CNTs (— n = 30), and the mean values of w (), the standard deviation of w (0Oy), and the uncertainty in
Wy (Ow/+/n) are included in Table S1. To convert from a deterministic waviness description (defined by w)
to a stochastic one, tortuosity (T) of the CNTs, which is discussed in the main text as the ratio of the true
(arc) length of the CNTs to the measured height of the CNT array in the Z direction, should be used instead
of w. T can be defined as follows for w that has a sinusoidal (— T(w)p,) and helical (— T(w)peix) functional
forms (eqns S3a and S3b are simplified using — w = a/A and setting a = 1):!

)sin = / \/ (2mweos (272)) )dz (S3a)

T(W)helix = (1 + (27'CW)2) (S3b)

See Fig. S3 for a plot of T, and Thejix evaluated via eqn S3a and eqn S3b. The mean (L), standard
deviation (o), and uncertainty (o.//n) of T using both the sinusoidal (— p", 65" and " /\/n) and
helical (— ubelix ghelix and ghelix /| /i) functional forms can be found in Table S1.

The scaling of ,uw and oy, with V; is also presented in the main text (see Fig. 3 and eqn 1), and the role
of Uy and oy /4/n in modeling the wavy CNT stiffness is discussed in Sec. S3.
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Fig. S3 Tortuosity (T) as a function of waviness ratio (w) for sinusoidal (eqn S3a) and helical (eqn S3b)
functional forms of the CNT morphology.
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Table S1 Experimentally determined waviness ratio (w) and tortuosity (T) from eqn S3 as a function of the
CNT volume fraction (V). The mean values of w and T (U and [L;), the standard deviation of w and T (O,
and o) were approximated from 30 CNTs (— n = 30).

Ve [%] Experimental wavinegs (sinusoidal) Sinpsoidal tortqosity Heli‘cal tortuosity
u \fvm 0.svln uw ﬂ?n o-"ﬁm ‘uﬁlclehx G,Iclehx
1 0.198 0.119 1.352 0.352 1.596  0.556
6 0.159 0.098 1.253 0.243 1.414 0414
10.6 | 0.127 0.072 1.171 0.147 1.279  0.272
20 0.101 0.049 1.109 0.097 1.184  0.161
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S3 Mechanical Behavior of Wavy Carbon Nanotubes

Using Ar and Az as defined by eqn S1, the extension (Eexiension)> shear (Egnear), bending (Epending ), and torsion
(&torsion) contributions discussed in the main text can be derived from the correlations previously reported

for a carbon nanocoil as follows: >
(o) () (i) () oo

where L = t(w)Az and represents the arc length of the CNT between the two nodes in the Z direction (see
Fig. S3 for the scaling of T(w) with w), ¥ and G are the elastic and shear moduli of the CNTs, A is the
cross-sectional area of the CNTs defined by the inner (D; ~ 5 nm) and outer (D, ~ 8 nm) diameters, ! I and
J are the area and polar (i.e. torsion) moments of inertia of a hollow cylinder, and « is the shear coefficient
for a multiwalled CNT (MWCNT) that has the following form: 3

746y (1 + (Di/DO)Z)2 +(20+ 12v) (Dy/D,)?
o=

) (s5)
6(1+v) (1 + (Di/Do)z)

where Vv is the Poisson ratio with an assumed value of v ~ 0.3 (— a ~ 1.3 for the CNTs studied here),
and Dj and D,, are the inner and outer diameters of the MWCNTs. Using these correlations, the mechanical
behavior of CNTs with waviness defined by the mean and uncertainty in w (see Sec. S2) is studied via an
array of 10° simulated CNTs, and the physical origin of the scaling of the CNT array stiffness as a function
of CNT proximity is evaluated (see Figure 4 in the main text).
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Fig. S4 Contribution of extension, shear, bending, and torsion deformation mechanisms (see eqn S4) to the
effective compliance (— Emoge /Eior Where Eiop = Y. &) of wavy CNTs as a function of the waviness ratio (w)
and CNT volume fraction. (a) Deformation mode contributions for CNTs with Vi ~ 5%. (b) Deformation
mode contributions for CNTs with Vs = 10%. (c) Deformation mode contributions for CNTs with

Vi = 20%. (d) Deformation mode contributions for CNTs with Vi =~ 40%.

See Fig. S4 for the contributions of extension, shear, bending, and torsion to the stiffness of CNTs arrays
as function of w and Vs (see Figure 4b in the main text for a plot of the stiffness scaling).
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S4 Guide for Applying This Simulation Framework to Other
Nanofiber Arrays

The 3D morphology and mechanical behavior of aligned nanofiber (NF) arrays can be predicted using the
simulation framework presented here by following the steps outlined below:

Part I 3D morphology initialization

1.

Determine the NF geometry (i.e. inner and outer diameters), and the value and/or range of the
NF array volume fraction (V;) that will be used in the study. These parameters can either be
assumed, or be experimentally/theoretically evaluated.

Evaluate the average minimum and maximum inter-NF separations. This can be done by as-
suming a packing coordination (either square or hexagonal close packing), or preferably using
the model previously developed for quantifying the packing morphology of NFs.*> These val-
ues are evaluated using the NF outer diameter and V;, and will be used to define the confining
area of each NF.

Approximate the waviness ratio (w) of the NFs. This can be done by either assuming the value
and/or scaling of w with V¢, or by experimentally evaluating the evolution of w with packing
proximity (as done here). If the average tortuosity (T) of the NFs is known instead of w, T can
be converted to w using eqn S3.

Initialize the confining box of each NF starting at the first node. For simplicity, place the first
node in the middle of the confining area.

. Place the second node using the position of the first node, and a small x — y plane displacement

evaluated using the the waviness amplitude A (A is set as the average inter-NF separation here),
w, and a normally distributed random number with a value ranging from O to 1 (e.g. ‘rand’ in
MATLAB). The displacement of the second node in the Z direction should be evaluated using
the number of nodes that comprise each A (i.e. the simulation resolution, where 20 nodes for
each A was used in this study).

Repeat this process until all the nodes for each NF are generated. If a node falls outside of the
confining area, place that node at the boundary.

. Evaluate the average arc length (= 7) of each NF in the array, and adjust the node displacement

in the Z direction until T = t(w)j, from eqn S3.

. Sample and record the average x —y (— Ar) and 2 (— Az) displacements for A /2, and use

eqn S1 to evaluate the coefficients x (w) and §(w).

Part II effective elastic modulus prediction

1.

Input the NF geometry, intrinsic moduli, and morphology parameters into eqn 2 and eqn 3 in
the main text.

Solve numerically at each V; by sampling the stiffness of each NF (i.e. using the unit cells that
comprise the NF and their respective T), and average over the entire NF array.

. Repeat for the entire V¢ range.
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