Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Ultraporous Nanocrystalline TiO₂-based Films: Synthesis, Patterning and Application as Anti-Reflective, Self-Cleaning, Superhydrophilic Coatings

M. Faustini,^a A. Grenier^a, G. Naudin^a and D. Grosso^{a,b*}

Figure S1 AFM analysis of the ultraporous TiO₂-based layer

Figure S2: (left) Diffraction diagram obtained after radial integration of the GI-WAXS 2D-pattern collected on the ST-PBF film. The diffraction signal located at $2\theta=24.5^{\circ}$ corresponds to the (101) reticular plans of the Anatase phase of TiO₂. The signal located at 15° (2 θ) could not be attributed to any TiO₂ phase and is likely to be a measurement artefact. (right) HR TEM of the 10%SiO₂ 90% TiO₂ porous film. Dotted lines are representing single anatase particles

Figure S3: Contact angle measurement of the ultraporous TiO₂-based before (left) and after (right) water droplet deposition

S4 Experimental calculation of LA filling fraction

The filling fraction of LA into the porosity was evaluated by a 3 components Bruggeman Effective Medium approximation as follows:

$$f_{TiO_2} \frac{\tilde{\varepsilon}_{TiO_2} - \tilde{\varepsilon}}{\tilde{\varepsilon}_{TiO_2} + 2\tilde{\varepsilon}} + f_{air} \frac{\tilde{\varepsilon}_{air} - \tilde{\varepsilon}}{\tilde{\varepsilon}_{air} + 2\tilde{\varepsilon}} + f_{LA} \frac{\tilde{\varepsilon}_{LA} - \tilde{\varepsilon}}{\tilde{\varepsilon}_{LA} + 2\tilde{\varepsilon}} = 0$$

were the phase TiO₂ represent the TiO₂-based material (0.9 TiO₂/0.1 SiO₂). Here the 3 phases are not adsorbing in the considered range of the wavelength so that the dielectric constants are the square of the refractive indices. For the polluted films, $f_{air} + f_{LA}$ is equal to the 0,8 (porous volume) while f_{TiO2} is equal to 0,2. Assuming the refractive index values of the TiO₂-based phase, LA and air being 2.1, 1.42 and 1 respectively, we calculated LA filling fraction of 50±5% of the porosity (41±2% of the full film volume).