Supporting Information

Formation of Hollow and Mesoporous Structure in Single-Crystalline Microcrystals of Metal-Organic Frameworks via a Double-Solvent Mediated Overgrowth

Lien-Yang Chou^{a,†}, Pan Hu^{a,†}, Jia Zhuang^a, Joe V. Morabito^a, Ka Chon Ng^b, Ya-Chuan Kao^b, Shao-Chun Wang^c, Fa-Kuen Shieh^c, Chun-Hong Kuo^{b,*}, and Chia-Kuang Tsung^{a,*}

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA

TABLE OF CONTENTS

Experimental Section	S-2
Figure S1. SEM images of water synthesized ZIFs	S-4
Figure S2. Powder XRD patterns of hollow and mesoporous ZIF-8	S-4
Figure S3. Nitrogen sorption isotherm of hollow and mesoporous ZIF-8	S-5
Figure S4. SEM and TEM images of ZIF-8@ZIF-8 overgrowth in water	S-5
Figure S5. TEM images of ZIF-8@ZIF-8 overgrowth in methanol with excess 2-mim	S-6
Figure S6. STEM/EDS line scan and elemental mapping of ZIF-67@ZIF-8 overgrowth in water	S-6
Figure S7. Time study of hollow MOF overgrowth in methanol	S-7

Experimental section

General considerations: Unless otherwise stated, all the reactions were carried out in the air without taking any precaution to protect reactions from oxygen or moisture. Cetyltrimethylammonium bromide (CTAB, Calbiochem, 98%), hydrogen tetrachloroaurate trihydrate (HAuCl₄ · 3H₂O, Sigma-Aldrich, ~50% Au basis), Sodium citrate tribasic dehydrate (Sigma-Aldrich, >99%), zinc nitrate hexahydrate (Zn(NO₃)₂ · 6H₂O, Sigma-Aldrich, 99%), cobalt(II) nitrate hexahydrate (Co(NO₃)₂ · 6H₂O, Sigma-Aldrich, 99%), 2-methylimidazole (Sigma-Aldrich, 99%). Ultrapure deionized water (d. i. H2O, 18.2 M9) was used for aqueous solution preparations.

Characterization: Transmission electron microscope (TEM) images were obtained on JEOL JEM2010F operated at 200 kV. Scanning transmission electron microscope (STEM) and Energy-dispersive X-ray spectroscopy (EDS) mapping experiments were performed on a FEI Probe Cs corrected Titan operating at 200 kV. Scanning electron microscope (SEM) images were obtained on a JEOL JSM6340F. The powder x-ray diffraction patterns (PXRD) were collected on a Bruker AXS diffractometer with Cu K α radiation (λ = 1.5418 Å). The nitrogen gas adsorption-desorption was carried out on Micromeritics ASAP 2020.

Synthesis of 200 nm ZIF-8 and ZIF-67 nanocubes: The synthesis was carried out following the previous procedure in our lab with some modifications.¹ 1.75 mL aqueous solution of 0.55 mM CTAB and 790 mM 2-methylimidazole mixture was stirred at 500 rpm for 5 minutes. Then 0.250 mL 97.5 mM $Zn(NO_3)_2 \cdot 6H_2O$ aqueous solution was injected. The whole solution was stirred for another 5 minutes at 500 rpm. The reaction solution was then left undisturbed at room temperature for 3 hours. The formed ZIF-8 nanocubes were spun down at 5000 rpm for 10 minutes. To form the ZIF-67, the same reaction parameters were followed, just with the use of 97.5 mM $Co(NO_3)_2 \cdot 6H_2O$ aqueous solution instead of $Zn(NO_3)_2 \cdot 6H_2O$. For synthesis of 150 nm ZIF-8 nanocubes, the same reaction parameters were followed, just with the use of 0.55 mM CTAB.

Synthesis of 150 nm ZIF-8 nano-crystals in methanol: The synthesis was carried out following the previous procedure in our lab with some modifications². 7.15 mL methanol solution of 562 mM of 2-methyl imidazole was stirred at 500 rpm. 7.15 mL methanol solution of 70.5 mM $Zn(NO_3)_2 \cdot 6H_2O$ was injected. The whole solution was stirred for another 12 hours at 500 rpm. The formed ZIF-8 nano-crystals were spun down at 5000 rpm for 10 minutes.

Synthesis of solid, hollow and mesoporous ZIF-8: As-synthesized ZIF-8 cubes were collected by centrifugation and re-suspended in 1 mL methanol. 0.20 mL ZIF-8 cubes were mixed with 2.5 mL 30 mM 2-methylimidazole methanol solution. Then 2.5 mL 30 mM $Zn(NO_3)_2 \cdot 6H_2O$ methanol solution was injected. The reaction solution was then left undisturbed at room temperature for 1 hour (hollow ZIF-8) or 6 hours (mesoporous ZIF-8). The formed ZIF-8 nanoparticles were spun down at 5000 rpm for 10 minutes. To form solid ZIF-8, the same reaction parameters were followed, just with vacuum oven dried ZIF-8 cubes in preparing seeds solution.

Synthesis of ZIF-67@ZIF-8: Following a similar procedure as the synthesis of hollow ZIF-8, assynthesized ZIF-67 cubes were suspended in 1 mL methanol prior to the overgrowth step. The reaction solution was then left undisturbed at room temperature for 1 hour (hollow ZIF-67@ZIF-8) or 6 hours (mesoporous ZIF-67@ZIF-8). The formed ZIF-67@ZIF-8 nanoparticles were spun down at 5000 rpm for 10 minutes.

Synthesis of Au octahedron: The synthesis was carried out following the previous procedure in our lab with some modifications¹. 550 mg CTAB was dissolved in 97 mL d. i. H₂O, following by adding 2.50 mL 0.01 M HAuCl₄ and 0.50 mL 0.1 M trisodium citrate. The mixture solution was transferred into a 200 mL pressure vessel and heated at 110 °C for 24 hours. The formed Au octahedrons were spun down at 6000 rpm for 20 minutes and redispersed in d. i. H₂O.

Synthesis of Au@ZIF-8 nanocubes: The synthesis was carried out following the previous procedure in our lab with some modifications¹. Following a similar procedure as the synthesis of ZIF-8 nanocubes, ten second after the addition of $Zn(NO_3)_2 \cdot 6H_2O$, 500 µL Au octahedrons solution was injected into the mixture, while the Au octahedrons solution concentrations had already been adjusted to 9.6 µmol metal in 1 mL solution. The whole solution was stirred for another 5 minutes at 500 rpm. The reaction solution was then left undisturbed at room temperature for 3 hours. The formed Au@ZIF-8 nanocubes were spun down at 5000 rpm for 10 minutes.

Synthesis of mesoporous and solid Au@ZIF-8: Synthesis of mesoporous Au@ZIF-8 following a similar procedure as the synthesis of mesoporous ZIF-8, as-synthesized Au@ZIF-8 cubes were suspended in 1 mL methanol prior to the overgrowth step. The reaction solution was then left undisturbed at room temperature for 6 hours. The formed mesoporous Au@ZIF-8 nanoparticles were spun down at 5000 rpm for 10 minutes. To form solid Au@ZIF-8, the same reaction parameters were followed, just with vacuum oven dried Au@ZIF-8 cubes in preparing seeds solution.

References

(1) Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K. *Journal of the American Chemical Society* **2014**, *136*, 10561.

(2) Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. *ACS Nano* **2014**, *8*, 2812.

Figure S1. SEM images of example water synthesized (a) 150 nm ZIF-8 nanocubes, and (b) 200 nm ZIF-67 nanocubes. Size can be tuned between 100 nm and 500 nm.

Figure S2. Powder X-Ray diffration patterns of hollow ZIF-8 and mesoporous ZIF-8.

Figure S3. Nitrogen adsorption (\bigcirc) and desorption (\bigcirc) isotherms of hollow (blue) and mesoporous (red) ZIF-8.

Figure S4. SEM images (a) and TEM images (b) of water synthesized ZIF-8 cores overgrow ZIF-8 nanocubes in water. (c-d) TEM images of methanol synthesized ZIF-8 core overgrow ZIF-8 nanocubes in water. As-synthesized ZIF-8 cores can be seen in both cases. Larger ZIF-8 crystals confirmed overgrowth. 150 nm of ZIF-8 nanocubes would be formed under the overgrowth condition if no additional ZIF-8 cores.

Figure S5. TEM images of water synthesized ZIF-8 cores overgrow ZIF-8 nanocubes in methanol with the precursors 2-methylimidazole (2-mim) and $Zn(NO3)_2$ in a ratio of 55:1 (2-mim/Zn). About 20 nm of ZIF-8 nano-crystals were formed under the overgrowth condition because of the excess of 2-mim.

Figure S6. (a-b) TEM images of ZIF-67@ZIF-8 overgrowth in water. STEM/EDS line scan (c) and elemental mapping (d) of ZIF-67@ZIF-8 overgrowth in water. Green color represents Co and red color represents Zn

Figure S7. Time study of hollow MOF overgrowth in methanol. TEM images of (a and d) 1 hours overgrowth, (b and e) 3 hours overgrowth and (c and f) 6 hours overgrowth.