Supporting Information

Coaxial electrospinning of WO₃ nanotubes functionalized with bio-inspired Pd catalyst and their superior hydrogen sensing performance

Seon-Jin Choi,^a Saptarshi Chattopadhyay,^b Jae Jin Kim,^c Sang-Joon kim,^a Harry L. Tuller,^c Gregory C. Rutledge,^{b,*} and II-Doo Kim^{a,*}

Contents

- 1. Coaxial electrospinning with different feeding rates
- 2. Additional TEM image for pore size analysis
- 3. Dynamic response transition properties of sensors
- 4. XPS analysis of Pd-Porous WO₃ NTs

Fig. S1

Fig. S1 Macroporous WO₃ nanotubes (NTs) synthesized by polystyrene (PS) colloid templating with different shell composite solution feeding rates (f_s): (a) f_s =30 µL/min, (b) f_s =80 µL/min, and (c) f_s =100 µL/min.

Fig. S2

Fig. S2 (a) TEM image of Pd-loaded macroporous WO_3 NTs, (b) magnified TEM image of (a) with spherical pores on the surface, and (c) pore size distribution. The average pore diameter is 173.

Fig. S3 X-ray photoelectron spectroscopy (XPS) analysis of Pd-Porous WO₃ NTs: (a) Survey scan of Pd-Porous WO₃ NTs. High-resolution spectra in the vicinity of the (b) W 4f, (c) O 1s, and (d) Pd 3d.

Fig. S4 Dynamic response transition characteristics of dense WO₃ NTs, porous WO₃ NTs, and Pd-Porous WO₃ NTs at (a) 500 ppm and (b) 10 ppm.