## Supporting Information

## Direct Carbonization of Co-doped NH<sub>2</sub>-MIL-53(Fe) for Electrocatalysis of Oxygen Evolution Reaction

Yujie Han<sup>a,b</sup>, Junfeng Zhai<sup>a</sup>, Lingling Zhang<sup>a,b</sup>, and Shaojun Dong<sup>a,b</sup> $\square$ 

<sup>a</sup>State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

<sup>b</sup>University of Chinese Academy of Sciences, Beijing, 100049 (China)

E-mail: dongsj@ciac.ac.cn



Figure S1 TEM images of (A) MOF(Fe<sub>3</sub>-Co<sub>1</sub>), (B) MOF(Fe<sub>1</sub>-Co<sub>1</sub>), and (C) MOF(Fe<sub>1</sub>-Co<sub>3</sub>) calcinated at 550 °C in N<sub>2</sub> atmosphere.



Figure S2 TEM images of (A)  $NH_2$ -MIL-53(Fe), (B) MOF(Fe<sub>3</sub>-Co<sub>1</sub>), (C) MOF(Fe<sub>1</sub>-Co<sub>1</sub>), and (D) MOF(Fe<sub>1</sub>-Co<sub>3</sub>).



Figure S3 XRD patterns of  $NH_2$ -MIL-53(Fe) (black line),  $NH_2$ -MIL-53(Fe<sub>3</sub>Co<sub>1</sub>) (red line),  $NH_2$ -MIL-53(Fe<sub>1</sub>Co<sub>1</sub>) (blue line), and  $NH_2$ -MIL-53(Fe<sub>1</sub>Co<sub>3</sub>) (green line).



Figure S4 BET measurements: (A)  $N_2$  sorption isotherms and (B) BJH desorption pore size distributions of MOF(Fe<sub>1</sub>-Co<sub>3</sub>) and MOF(Fe<sub>1</sub>-Co<sub>3</sub>)<sub>550N</sub>.



Figure S5 Deconvoluted Ru 3d XPS spectra of as-prepared RuO<sub>2</sub> (A) and TEM image of as-prepared RuO<sub>2</sub>. The deconvoluted peaks at 280.6, 282.5 and 284.3 eV are consistent with the peaks of Ru  $3d_{5/2}$ , Ru  $3d_{5/2}$  sat and Ru  $3d_{3/2}$ , respectively, which indicates the presence of Ru(IV). According to David J. Morgan<sup>[1]</sup>, these binding energies suggest the formation of RuO<sub>2</sub>.

## Reference

[1] D. J. Morgan, Surf. Interface Anal. 2015, 47, 1072–1079.