Supplementary Information

Synergistic Dual-pH Responsive Copolymer Micelles for Impdiment of Premature Drug Release in Blood and Motivation of the Intracellular Delivery Efficiency

Hongzhang Deng^{1, 3}, Xuefei Zhao^{1, 3}, Jinjian Liu², Jianhua Zhang¹, Liandong Deng¹, Jianfeng Liu^{2*}, Anjie Dong^{1, 3*}

¹Department of Polymer Science and Technology and Key Laboratory of Systems
Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
²Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of
Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College,
Tianjin, 300192, China
³Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin
300072, China

* Corresponding author. Fax: +86 22 27890707.

** Corresponding author. Fax: +86 22 85683019.

E-mail addresses: ajdong@tju.edu.cn (A. Dong), lewis78@163.com (J. Liu).

Synthesis of mPEG-b-P(CL-co-BMPCL).

The mPEG-P(CL-co-BMPCL) was synthesized by ring-opening polymerization (ROP) of ε caprolactone and BMPCL in the presence of mPEG as an initiator and Sn(Oct)₂ as a catalyst according to our previous report[1]. Briefly, mPEG (1.0 g, 0.2 mmol) was dissolved in 3 mL toluene. Then ε -caprolactone (1.53 g, 13.4 mmol), BMPCL (0.167 g, 0.6 mmol) and stannous octoate were added to the reaction mixture under dry nitrogen and sealed. The system was stirred at 130 ° C for 12 h and then precipitated with excess diethyl. The resulting white solid was purified by precipitating with diethyl ether for three times. The mPEG-P(CL-co-BMPCL) product was dried in vaccumn for 24 h at room temperature

Synthesis of (2,2-dimeth yl-1,3-dioxolane-4-yl) methyl acrylate (DDMA).

The preparation of DA was carried out by the reaction of 1,2-isopropylideneglycerol (8.4 g, 65 mmol), methacryloylchloride (8.2 g, 90 mmol) and triethylamine (9.1 g, 90 mmol) in anhydrous CH_2Cl_2 (50 mL) in an ice bath for 15 h. The reaction solution was filtered and sequentially washed with 0.1 N HCl, 0.1 N NaOH and distilled water. The filtrate was concentrated by rotary evaporation. The product was purified by silica gel chromatography[2]. ¹H-NMR characterization of DDMA was shown in Figure. S1.

Fig. S1. ¹H-NMR characterization of DDMA

Fable S1. Stabilit	of blank and DO	X-loaded mPEG-ro	os-P(CL-co-DCL) NPs
--------------------	-----------------	------------------	----------------	-------

	Blank NPs			DOX-loaded NPs				
Copolymers	Size (nm) ^a	PDI a	Size (nm) ^b	PDI ^b	Size (nm) ^a	PDI a	Size (nm) ^b	PDI ^b
mPEG-b-(PCL-g-PDA ₃₀)	93 <u>+</u> 4	0.10	100 ± 5	0.13	125 ± 4	0.12	122 ± 5	0.12
mPEG-b-(PCL-g-P(DA ₃₀ -co-DMAEMA ₁₀))	105 <u>+</u> 6	0.11	110 ± 6	0.12	116 + 4	0.11	110 ± 6	0.13
mPEG-b-(PCL-g-P(DA ₃₀ -co-DMAEMA ₁₅))	128 ± 4	0.13	127 ± 7	0.12	127 + 3	0.12	126 ± 4	0.12
mPEG-b-(PCL-g-P(DA ₃₀ -co-DMAEMA ₂₀))	140 <u>+</u> 3	0.12	142 ± 5	0.11	135 + 6	0.11	146 ± 6	0.11

^aDetermined using Laser particle size analyzer at 25°C in PBS (10 mM, pH 7.4).

^b Determined using Laser particle size analyzer at 25°C in PBS (10 mM, pH 7.4) containing 10% (v/v) FBS .

Fig. S2. The zeta potential of the freeze-dried micelles dispersed in H₂O at pH 5.0. mPEG-b-(PCL-g-PDA₃₀) (a), mPEG-b-(PCL-g-P(DA₃₀-co-DMAEMA₁₀)) (b), mPEG-b-(PCL-g-P(DA₃₀-co-DMAEMA₁₅))
(c) and mPEG-b-(PCL-g-P(DA₃₀-co-DMAEMA₂₀)) (d)

Table S1 Physiochemical characteristics of mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles with FRET probes (DiO and Dil).

Copolymers	Loading content (%, w/w)		Diameters ^a	PDI ^a
	DIO	DiI		
mPEG-b-(PCL-g-PDA ₃₀)	0.60	0.61	101 ± 3	0.118
mPEG-b-(PCL-g-P(DA ₃₀ -co-DMAEMA ₁₀))	0.63	0.62	125 <u>+</u> 5	0.126
mPEG-b-(PCL-g-P(DA ₃₀ -co-DMAEMA ₁₅))	0.66	0.65	132 <u>+</u> 7	0.121
mPEG-b-(PCL-g-P(DA ₃ 0-co-DMAEMA ₂₀))	0.74	0.73	140 <u>+</u> 6	0.122

^aLoading content of payloads were measured using UV absorbance ^bMean diameter and polydispersity were determined by DLS

Fig. S3 Representative Fluorescence microscopy images of MCF-7 cells incubated with DOX-loaded

mPEG-b-(PCL-g-PDA₃₀) (a) and mPEG-b-(PCL-g-P(DA₃₀-co-DMAEMA₂₀)) (d) micelles and free DOX (10 μ g/mL) for 12 h (scale bars, 25mm).

Fig. S4. Endocytosis inhibition of DOX-loaded mPEG-b-(PCL-g-PDA₃₀) (a), mPEG-b-(PCL-g-

 $P(DA_{30}\text{-}co\text{-}DMAEMA_{10})) \hspace{0.2cm} (b), \hspace{0.2cm} mPEG\text{-}b\text{-}(PCL\text{-}g\text{-}P(DA_{30}\text{-}co\text{-}DMAEMA_{15})) \hspace{0.2cm} (c), \hspace{0.2cm} and \hspace{0.$

P(DA₃₀-co-DMAEMA₂₀)) (d) micelles in MCF-7 cells using various endocytosis inhibitors.

Reference

[1] Deng H, Zhang Y, Wang X, Cao Y, Liu J, Liu J, et al. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta biomaterialia. 2015;11:126-36.

[2] Zhang D, Zhang H, Nie J, Yang J. Synthesis and self - assembly behavior of pH - responsive amphiphilic copolymers containing ketal functional groups. Polymer International. 2010;59:967-74.