Electronic Supplementary Information

A Study into the Role of Surface Capping on Energy Transfer in Metal Cluster-Semiconductor Nanocomposites

Dipankar Bain,[†] Bipattaran Paramanik,[†] Suparna Sadhu[#] and Amitava Patra^{*†}

[†]Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700

032, India

[#] Department of Chemistrty, Sukumar Sengupta Mahavidyalaya, Keshpur, Paschim Medinipur,

WB, India

*Author to whom correspondence should be addressed. Electronic mail: msap@iacs.res.in. Telephone: (91)-33-2473-4971. Fax: (91)-33-2473-2805.

Synthesis of Glutathione Capped gold nanoclusters (Au NCs)

We have prepared an aqueous solution of HAuCl₄ (20 mM) and Glutathione (10 mM) with millipore water for the synthesis of gold nanoclusters (Au NCs). In a typical synthesis method¹ 0.7 mL millipore water and 6 mL ethanol was taken in a 20 mL beaker and added HAuCl₄ (20 mM, 0.50 mL) with vigorous stirring. then aqueous solution of GSH (10 mM, 2 mL) was introduce into the reaction mixture with vigorous stirring for 5 minutes and the reaction mixture turns to cloudy, indicates the formation of Glutathione-Au(I) complexes. The cloudy solution became color less on addition of NaOH solution (1M, 0.6 mL). Finally 0.2mL NaBH₄ solution (freshly prepared by dissolving 43 mg of NaBH₄ powder in 10 mL of 0.2 M NaOH solution) was added. The GSH-Au₂₅NCs were collected after 3 hours and stored at 4^oC for further characterizations.

Synthesis of L-Cysteine Capped gold nanoclusters (Au NCs)

In a typical synthesis method¹, 4.7 mL millipore water was taken in a 20 mL beaker and then added HAuCl₄ (20mM, 0.50 mL) with vigorous stirring. The Cys solution (5mM, 4 mL) was added into the reaction mixture with vigorous stirring for 5 minutes and the reaction mixture turns to cloudy indicating the formation of Cysteine-Au (I) complexes. The cloudy solution became color less on addition of NaOH solution (1M, 0.6 mL). Finally 0.2 mL NaBH₄ solution (freshly prepared by dissolving 43 mg of NaBH₄ powder in 10 mL of 0.2 M NaOH solution) was added. The Cys-Au₂₅NCs were collected after 3 hours and stored at 4^oC for further analysis.

Synthesis of highly luminescent GSH-capped CdTe QDs:

The synthesis method for GSH-capped CdTe QDs is almost same as earlier illustrated for cysteamine capped CdTe QDs. The synthesis of GSH-capped CdTe QDs has minor modification² in experimental parameters. Specifically, the pH of the cadmium precursor solution was attuned to 10.5 by adding drop by drop NaOH (1M).

Results and discussion:

To analyze the PL quenching mechanism the deacy dynamics of CdTe QDs in each nanocomposite have been investigated by time resolved fluorescence spectroscopy. For the Au: Cd ratio 0.02: 1 in GSH-Au₂₅NC-QD nanocomposite the decay time is reduced to 6.87 ns with the combination of 1.19 ns (49%), 7.27 ns (39%), and 28.81 ns (12%). For the Au: Cd ratio 0.16: 1 in GSH-Au₂₅NC-QD nanocomposite the decay time of QDs is reduced to 5.13 ns with the combination of 0.69 ns (61%), 6.37 ns (30%), and 31.15 ns (9%) (Figure S8A). Similarly, for the

Au: Cd ratio 0.02: 1 in Cys-Au₂₅NC-QD nanocomposite the average decay time of CdTe QDs reduced to 6.25 ns with the combination of 1.06 ns (50%), 6.91 ns (39%), and 27.56 ns (11%). For the Au: Cd ratio 0.16: 1 in Cys-Au₂₅NC-QD nanocomposite the average decay time of CdTe QDs reduced to 4.23 ns (Figure S8B). However the decay time of CdTe QDs is drastically changed in BSA-Au₂₅NC-QD nanocomposite. The average decay time of CdTe QDs for Au: Cd ratio 0.02: 1 in BSA-Au₂₅NC-QD nanocomposite is found to be 2.81 ns with the combination of 0.54 ns (81%), 5.52 ns (15%), and 38.71 ns (4%). The decay time of CdTe QDs for Au: Cd ratio 0.16: 1 in same nanocomposite is found to be 1.32 ns with the combination of 0.32 ns (94%), 6.21 ns (5%), and 71.58 ns (1%) (Figure S8C). The decay time of CdTe QDs to Au NCs.

Fig. S1 TEM image of cysteamine capped CdTe QDs.

Fig. S2 Zeta potential of (A) GSH-Au₂₅NC (a), GSH-Au₂₅NC-QD (b), CdTe QDs (c); (B) Cys-Au₂₅NC (a), Cys-Au₂₅NC-QD (b), CdTe QDs (c); and (C) BSA-Au₂₅NC (a), BSA-Au₂₅NC-QD (b), CdTe QDs (c), respectively.

Fig. S3 TEM images (A), (C), and energy dispersive X-ray (EDX) spectra (B), (D) of GSH-Au₂₅NC-QD, Cys-Au₂₅NC-QD, respectively.

Fig. S4 FTIR spectra of (A) CdTe QDs (a), GSH-Au₂₅NC (b), GSH-Au₂₅NC-QD (c); (B) CdTe QDs (a), Cys-Au₂₅NC (b), Cys-Au₂₅NC-QD (c); and (C) CdTe QDs (a), BSA-Au₂₅NC (b), BSA-Au₂₅NC-QD (c), respectively.

Fig. S5 Photoluminescence spectra of pure CdTe QDs solution in water without Au NCs (a) and nanocomposites with Au: Cd ratio of 0.02: 1 (b), 0.04: 1 (c), 0.08: 1 (d), 0.12: 1 (e), 0.16:1 (f), 0.20: 1 (g), and 0.24: 1 (h) in (A) GSH-Au₂₅NC-QD, (B) Cys-Au₂₅NC-QD, (C) BSA-Au₂₅NC-QD, QD, respectively.

Fig. S6 Photoluminescence spectra of negatively charged glutathione capped CdTe QDs solution in water without Au NCs (red) and in presence of GHS-capped $Au_{25}NC$ with the Au: Cd ratio 0.16: 1 (blue).

Fig. S7 Time-resolved decay time plots of the CdTe QDs without Au NCs (a) and with Au: Cd ratio 0.02: 1 (b), 0.16:1 (c) in (A) GSH-Au₂₅NC-QD, (B) Cys-Au₂₅NC-QD, (C) BSA-Au₂₅NC-QD, qD, respectively.

References

- 1 X. Yuan, B. Zhang, Z. Luo, Q. Yao, D. T. Leong, N. Yan and J. Xie, *Angew. Chem., Int. Ed.*, 2014, **53**, 4623-4627.
- 2 B. Paramanik, S. Bhattacharyya and A. Patra, *Chem. -Eur. J.*, 2013, **19**, 5980-5987.