Supporting Information

## Transmembrane Delivery of Anticancer Drugs through Self-

## assembling Cyclic Peptide Nanotubes

Jian Chen, a Bei Zhang, Fei Xia, Yunchang Xie, Sifan Jiang, Rui Su, Yi Lu, and Wei Wuat

<sup>a</sup> School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai 201203, China

+Corresponding author. E-mail: wuwei@shmu.edu.cn



Fig. 1S Micrographs of liposomes obtained using a TEM (JEM-1230, JEOL, Japan) after adsorption of the samples on copper grids and staining negatively with 1% (w/v) uranyl acetate. A: 5-FU; B: tegafur; C: cisplatin; D: cytarabine.

|            | · · · · · ·        | <u> </u>                  |
|------------|--------------------|---------------------------|
| Drug       | Partical size (nm) | Entrapment efficiency (%) |
| 5-FU       | 627.8 ± 89.5       | 14.43% ± 3.01%            |
| Cisplatin  | 351.9 ± 17.5       | 8.38% ± 1.49%             |
| Tegafur    | 261.9 ± 28.8       | 12.13% ± 1.33%            |
| Cytarabine | 370.6 ± 54.1       | 16.25% ± 2.48%            |

Table 1S Particle size and entrapment efficiency of model drug-loaded liposomes

The particle size of liposomes were measured by Zetasizer Nano® (Malvern Instruments, UK) at 633 nm and 25°C. Entrapment efficiency was calculated  $W_{entrapment}/W_{total} \times 100\%$ , where  $W_{entrapment}$  referred to drug amount entrapment in liposomes as measured by separating liposomes from free drugs using a Sephadex G-25 column, and  $W_{total}$  referred to total drug amount measured after disrupting the liposomes with Triton X-100.



Fig. 2S Optical micrograph (left;  $\times$ 600) and transmission electron micrograph (right; bar: 1  $\mu$ m) of bundles of CNPTs precipitated from TFA/CHCl<sub>3</sub>.

| Table 23. The release of 5(0)-carboxynuorescent liposonies |                             |                                           |  |  |
|------------------------------------------------------------|-----------------------------|-------------------------------------------|--|--|
| Group                                                      | $R_{DMF}$ or $R_{CP}^{[a]}$ | <b>R</b> <sub>Triton</sub> <sup>[a]</sup> |  |  |
| Blank                                                      |                             | 245.78%±11.25%                            |  |  |
| DMF                                                        | 2.17%±1.29%                 | 208.38%±10.85%                            |  |  |
| CP (1:50, n/n)                                             | 17.55%±0.23%                | 165.58%±5.08%                             |  |  |
| CP (1:25, n/n)                                             | 18.04%±0.39%                | 179.18%±6.05%                             |  |  |
|                                                            |                             |                                           |  |  |

Table 2S. The release of 5(6)-carboxyfluorescein liposomes

[a] The ratio  $R = (F_{max} - F_0)/F_0$ , including  $R_{DMF}$ ,  $R_{CP}$  and  $R_{Triton}$ , was used to express the membrane-disrupting, in which  $F_{max}$  represents the maximal fluorescence value after the addition of DMF, cyclic peptides or Triton X-100 solution and  $F_0$  is the initial fluorescence of the liposome suspensions.



Figure 3S. The inhibitory effect of peptide nanotubes on BEL7402 (left), Hela (middle) and S180 (right) cell proliferation

| Table 3S Structure information of model drugs |                       |        |           |  |
|-----------------------------------------------|-----------------------|--------|-----------|--|
| Drug                                          | Structure             | MW     | Size (nm) |  |
| 5-Fluorouracil                                | HN F<br>O HN H        | 130.08 | 0.44      |  |
| Cisplatin                                     | CI Pt NH <sub>3</sub> | 300.05 | 0.48      |  |
| Tegafur                                       | HN F                  | 200.17 | 0.80      |  |
| Cytarabine                                    |                       | 243.22 | 1.11      |  |