Supplementary Materials: Electronic and transport properties of two-dimensional conjugated polymer networks including disorder.

Jean-Joseph Adjizian,* Aurélien Lherbier, Simon Dubois, Andrés Rafael
Botello-Méndez, and Jean-Christophe Charlier
Université catholique de Louvain, Institute of Condensed Matter and Nanosciences,
Chemin des étoiles 8, 1348 Louvain-la-neuve, Belgium

E-mail: jean.adjizian@uclouvain.be

Figure 1: (A) A pristine 2DCP cell and (B) the corresponding wave function at the highest occupied state (at K-point).

Figure 2: Effect of various benzene rotations on the electronic properties of the 2D conjugated polymer network. (A) Side view along a branch axis of the primitive cell, θ represents the dihedral angle between a branch and the XY plan. φ represents the dihedral angle between benzene rings and θ. (B) Side view perpendicular to the branch axis in (A). φ_{1} represents the dihedral angle of the first benzene ring and φ_{2} represents the dihedral angle of the second benzene ring with respect to θ. (C) First-principles electronic band structures for structures with different rotational angles. The black curve is the ground state band structure $\left(\theta=30.8^{\circ}\right.$ and $\varphi_{1}=\varphi_{2}=0^{\circ}$), the red and blue curves are the band structures with a single benzene ring rotated by $+15^{\circ}\left(\varphi_{1}=15^{\circ}, \varphi_{2}=0^{\circ}\right)$ and $-15^{\circ}\left(\varphi_{1}=-15^{\circ}, \varphi_{2}=0^{\circ}\right)$ respectively. The green and orange curves are the band structures with a branch rotated by $+15^{\circ}\left(\varphi_{1}=\varphi_{2}=15^{\circ}\right)$ and -15° $\left(\varphi_{1}=\varphi_{2}=-15^{\circ}\right)$.

Figure 3: A 4 x 4 2DCP cell containing 6.25% of vacancies. For each structure, from 1 to 5 , there are two vacancies: one located on the sub-lattice "A" and one on the sub-lattice "B". These five different configurations are investigated and their respective DOS are shown.

