Supporting Information

Synthesis of Antireflective Silica Coatings through the Synergy of Polypeptide

Layer-by-Layer Assemblies and Biomineralization

Yung-Lun Lee, Ting-Xuan Lin, Feng-Ming Hsu and Jeng-Shiung Jan*

Department of Chemical Engineering National Cheng Kung University No 1, University Rd., Tainan,

Taiwan 70101 (Taiwan)

Table S1	. Characterization	of poly(Z-L-lysine)	(PZLL) and poly	γ(γ-benzyl gluta	mate) (PBLG)	by GPC
an	alysis.					

Sample	M _n	$M_{\rm w}$	M_w/M_n
PZLL ₇₀	17,000	22,000	1.28
PZLL ₁₇₀	44,000	57,300	1.30
PZLL ₃₄₀	91,000	110,000	1.20
PBLG ₁₀₀	18,200	2,1000	1.16

Sample	Feed molar ratio of anhydride to lysine (%)	Obtained DS (%)
PLL_{70} -g-Dec _{0.25}	25	23.0
PLL ₁₇₀ - <i>g</i> -Dec _{0.25}	25	21.3
PLL ₁₇₀ -g-Dec _{0.4}	40	33.6
PLL ₃₄₀ - <i>g</i> -Dec _{0.25}	25	22.7
PLL ₃₄₀ - <i>g</i> -Dec _{0.4}	40	34.3

Table S2. Feed molar ratio of anhydride to lysine and obtained degree of substitution (DS) for
decanoyl-modified PLL (PLL-g-Dec) graft copolypeptides.

Sample	pН	Size (nm)	PDI	Zeta potential (mV)
	7.4	181.9±5.7	0.31±0.01	17.3±0.5
$PLL_{70}-g-Dec_{0.25}$	5.0	141.4±0.9	0.32±0.01	23.2±0.8
	7.4	62.3±5.7	0.15±0.02	18.1±1.3
$PLL_{170}-g-Dec_{0.25}$	5.0	107.3±0.5	0.29±0.01	37.3±0.2
	7.4	72.6±0.3	0.11±0.01	18.9±0.7
$PLL_{170}-g-Dec_{0.4}$	5.0	99.3±0.9	0.19±0.01	25.8±0.8
	7.4	44.3±0.1	0.17±0.01	9.4±1.6
PLL ₃₄₀ -g-Dec _{0.25}	5.0	161±3.1	0.33±0.01	25.4±2.8
	7.4	43.1±0.3	0.28±0.01	20.0±0.8
PLL_{340} -g-Dec _{0.4}	5.0	124.0±1.0	0.36±0.01	34.2±3.2

Table S3. Hydrodynamic diameter (size) and zeta potential of PLL-*g*-Dec vesicles at pH 5.0 and 7.4 by DLS and electrophoresis analyses.

Figure S1. ¹H NMR spectra of (a) PLL_{70} -g- $Dec_{0.25}$, (b) PLL_{170} -g- $Dec_{0.25}$, (c) PLL_{170} -g- $Dec_{0.4}$, (d) PLL_{340} -g- $Dec_{0.25}$, and (e) PLL_{340} -g- $Dec_{0.4}$ graft copolypeptides.

Figure S2. Thickness of (PLL-*g*-Dec/PLGA)_n multilayer films as a function of number of bilayer (m). The multilayer films were prepared at pH 7.4 (n=5).

Figure S3. SEM images of the top view of (a) PLL_{170} -g-Dec_{0.25}/PLGA₁₀₀ and (b) PLL_{170} -g-Dec_{0.4}/PLGA₁₀₀ multilayer films with 8 bilayers. The samples were prepared at pH 7.4.

Figure S4. SEM images of the top view of mesoporous silica films prepared by (a-c) PLL_{70} -*g*- $Dec_{0.25}/PLGA_{100}$ and (d-f) PLL_{170} -*g*- $Dec_{0.4}/PLGA_{100}$ multilayer films with (a, d) 8, (b, e) 10, and (c, f) 12 bilayers.

Figure S5. AFM images of the silica films prepared by PLL₇₀-*g*-Dec_{0.25}/PLGA₁₀₀ multilayer films with (a) 8, (b) 10, and (c) 12 bilayers.

Figure S6. AFM images of the silica films prepared by prepared by PLL_{170} -*g*-Dec_{0.4}/PLGA₁₀₀ multilayer films with (a) 8 and (b) 10 bilayers.

Figure S7. Transmission spectra of AR silica films prepared by PLL_{340} -g-Dec_{0.4}/PLGA₁₀₀ multilayer films with 4 and 8 bilayers measured by UV-vis.