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Fig. S1 (a) a selected area of S-micro@meso-porous DSC for Energy dispersive X-ray spectroscopy mapping analysis and (b) 
EDS elemental mapping result for S.

Fig. S2 Volumetric capacity profiles of S-micro@meso-porous DSC cells at 0.2C, 0.5C and 1C.

Comparison of dual-spatial porous carbon (DSC) with single-spatial carbon (SSC)
The micro@meso-porous DSC in main text was based on wrapping microporous carbon into dense graphene, developing a 
dual-spatial porous carbon. Herein, another SSC was carried out based on our previous work 1 to further demonstrate the 
advantage of DSC.
In brief, a 10 mL sample bottle filled with homogeneous GO colloidal suspension (5 mL, 5 mg·mL-1), was placed into a 50 mL 
Teflon-lined autoclave, and treated by a hydrothermal process in an oven (180 oC) for 3 h, resulting in a black cylindrical 
graphene hydrogel. The graphene hydrogel was immersed in sodium thiosulfate solution (Na2S2O3, 5 M, 5 mL) at the 
ambient temperature of 50 oC for 3 hr. After lightly wiped the redundant solution on the surface, the hydrogel was then 
reacted with precooled hydrochloric acid (HCl, 1 M, 3 mL) for another 3 hr at ambient temperature of 3 oC. As obtained 
sulfur-graphene hydrogels were washed several times, and then subjected to oven drying at 60 oC for 12 hr, to produce S-
SSC. The S-SSC was subjected to EIS, CV and galvanostatic cycling measurements.
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As shown in Fig. S3, the internal impedance of the S-micro@meso-porous DSC is slightly higher than that of the S-SSC, may 
be attributed to the outstanding electrical conductivity of graphene sheets, which indirectly demonstrate the existance of 
abundant micropores in S-micro@meso-porous DSC. The S-micro@meso-porous DSC shows smaller interface contact 
resistance than that of S-SSC, indicating the dual-spatial porous structure could supply more channel to lithium ion 
diffusion, thus enhance the lithium ion conductivity.

Fig. S3 EIS curves of S-micro@meso-porous DSC and S-SSC.
Compared with the S-SSC cathode (Fig. S4b), the S-micro@meso-porous DSC cathode (Fig. S4a) shows narrower 
oxidation and reduction peaks, indicating that the collection of current was easier in dual-spatial porous structure, 
ascribed to the much closer contact between sulfur and porous AC/graphene within the closed pores. During the ten 
cycles, CV curves of the S-micro@meso-porous DSC cathode maintain better than that of S-SSC cathode, showing that 
double layered porous structure as a hierarcaical reservoir can effectively prevent the dissolution of polysulfide into 
electrolyte, and thus keep the cathodes stable.

Fig. S4 CV curves of S-micro@meso-porous DSC and S-SSC.

After the initial two cycles of activation and stabilization, the discharge capacity in the third cycle are 1082.9 mAh·g-1 
(1045.1 mAh·g-1) and 989.7 mAh·g-1 (925.1 mAh·g-1) for S-micro@meso-porous DSC and S-SSC respectively at the rate 
of 0.2C (or 0.5C) (Fig. S5). More degration of capacity occurs in the S-SSC (remaining 835.4 mAh·g-1 at 0.2C and 794.2 
mAh·g-1 at 0.5C after 150 cycles) in contrast with the S-micro@meso-porous DSC (remaining 891.9 mAh·g-1 at 0.2C 
and 837.6 mAh·g-1 at 0.5C after 150 cycles). The S-micro@meso-porous DSC shows better cycling performance than 
that of S-SSC, owing to the dual-spatial hierarchical porous structure performing better in traping sulfur and resisting 
polysulfide dissolution, as a result of inner abundant micropores and outer mesopores to resist polysulfide 
dissolution at two interfaces during discharge.
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Fig. S5 Cycling specific capacity profiles of S-micro@meso-porous DSC and S-SSC continued to cycle at a rate of (a) 0.2C, and 
(b) 0.5C after cycled at a rate of 0.05C for two cycles between 1.6 and 2.8V.

Transparent soft-pack cells were assembled to view the polysulfide dissolution behavior in cells (Fig. S6). The 
electrolyte in the cell with the S-micro@meso-porous DSC and S-SSC cathodes keep colorless after 10 cycles, while the 
S-SSC cell turns into slight yellow color after 25 cycles caused by the dissolution of the yellow polysulfide. In contrast, 
the cell with the S-micro@meso-porous DSC cathode remains colorless after even 25 cycles, indicating the 
hierarchical pores structure could better immobilize sulfur and restrain the polysulfide within dual-spatially closed 
pores.

Fig. S6 Photos of the transparent soft pack cells of S-micro@meso-porous DSC and S-SSC after (a) 10 cycles, (b) 25 cycles.
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