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1 Time-Resolved Confocal Microscopy

Our home-built confocal microscope, shown schematically in Figure S1a, is described in detail
in Ref. S1. Briefly, a Ti:sapphire oscillator (Tsunami, Newport/Spectra Physics 3960-M3BB)
provided a pulsed near-infrared beam, λcenter = 892 nm, with a pulse duration of about 45 fs
at a repetition rate of 80 MHz. A combined β-barium borate frequency doubler/pulse picker
unit (Spectra Physics 3980) then allowed to obtain 200 fs pulses centered around 446 nm at
repetition rates that could accommodate the relaxation dynamics between two successive pulses
(4 MHz for QD525 and 2 MHz for QD655).

A small part of the resulting 446 nm excitation beam was split off to provide reference pulses
to a photodiode; the major fraction was directed toward a microscope objective (Nikon, CFI
LU PlanFluor EPI P 100 ×, NA 0.9) to focus it, after suitable attenuation by neutral density
filters, on the objective-facing, QD-coated surface of the substrate. The substrate was scanned
through the (near) diffraction-limited focus by means of a closed-loop stabilized XYZ-piezo
stage (Mad City Labs, NanoDrive). The luminescence photons were collected by the same ob-
jective and separated from residual laser light and other background contributions by appropri-
ate bandpass filters (Thorlabs, FES0550, FEL0500, FB650-40) before being focused on single
photon counting avalanche photodiode (APD, Perkin Elmer, SPCM-AQRH-14), whose active
area served as the detection pinhole. All lenses used in the optical path way were achromatic
doublets. Time-correlated single photon counting (TCSPC) electronics (Picoquant, TimeHarp
200) allowed to record the arrival times of all detected photons relative to the laser pulses
impinging on the reference diode with an internal temporal resolution better than 40 ps. The
overall instrumental response function (IRF) had a width of about 0.6 ns. Control of the piezo
stage either permitted to obtain a total intensity and lifetime image of a certain region of the
sample, with dimensions of typically several tens of microns in both lateral directions, or to
place an isolated nanoparticle in the focus and to study its luminescence dynamics in more
detail. The observation of isolated nanoemitters was corroborated by on/off-blinking as ex-
emplified by the luminescence intensity timetrace shown in Figure S1 (b). For each substrate,
we chose approximately 10 individual QDs and recorded their luminescence decay curve at
low excitation powers corresponding to free-space peak intensities of 50 W/cm2 in the focus
of the microscope objective. A flip mirror furthermore allowed to direct the collected lumi-
nescence to a spectrograph (Andor, Shamrock SR500) equipped with an electron-multiplying
charge-coupled device (EMCCD) camera (Andor, DU970P-UVB,USB) for verification of the
luminescence spectra. A stand-alone CCD video camera (Allied Vision, Pike F421B) was used
for alignment and focusing, as well as for quick surveys of the samples.
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Figure S1: Schematic diagrams of experimental setups for lifetime measurements and illustrative data.
(a) Confocal microscopy on single nanoparticles dispersed on dielectric substrates: Frequency dou-
bled 45 fs pulses of a Ti:sapphire laser were focused on the substrate surface after positioning isolated
nanocrystals in the focus by means of an XYZ piezo stage. The collected luminescence was filtered,
focused on a avalanche photodiode (APD) and analyzed by time-correlated single photon counting
(TCSPC) electronics to obtain luminescence lifetime curves like the example shown above (QD655, ex-
citation intensity 50 W/cm2 at 446 nm, integration time 100 s). A spectrograph/EMCCD combination
allowed to verify the emission spectra of both QD species. (b) Intensity timetrace and corresponding
histogram of a single QD525 excited at an intensity of 50 W/cm2; blinking events, i. e., transitions
between two distinct regimes of emission count rates, are clearly visible. (c) Lifetime measurements
on QDs in solutions were performed by focusing the emission of a pulsed laser diode into the QD so-
lution and registering the collected luminescence photons with a photomultiplier coupled to TCSPC
electronics.
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2 Maximum-Likelihood Estimation of Fluorescence Decay Rates

2.1 Likelihood Function, Kullback–Leibler Divergence, and Poisson Deviance

We used maximum-likelihood (ML) analysis [S2–S6] to fit our measured fluorescence decay
curves because this efficient and unbiased approach to parameter estimation is preferable to
the widely used χ2 minimization, especially for decay histograms containing a small number
of photons [S7]. The ML analysis of fluorescence lifetime data starts with a decay histogram
comprised of n channels, where each channel i = 1, 2, . . . , n contains the number ci of counts
detected with a delay between (i − 1) tb and i tb relative to the excitation laser pulse; tb is
the histogram bin time. A given model, e. g. mono- or biexponential decay, has its associated
vector θ = (θ1, . . . , θm) of m parameters such as decay rate(s), amplitude(s), and background
contribution. The likelihood function L is the joint probability of observing a given sequence
of channel counts {ci} and can be written as [S4]

L
(

c1, . . . , cn|θ
)

=

n
∏

i=1

p(ci|θ) , (S1)

where p(ci|θ) is the conditional probability of detecting ci counts in the i-th channel for a
certain choice of model parameters θ. The parameter vector θ̂ that maximizes the likelihood
function L represents the maximum-likelihood estimation (MLE) of the model parameters for
the data set {ci}. For practical purposes it is usually ln(L) that is maximized by parameter
variation, as the transition to logarithms allows to rewrite the product in Eq. (S1) as a sum of
ln(pi) terms. Analytic expressions for θ̂ can be found in some cases by setting the derivatives
of ln(L) with respect to the parameters θi to zero and solving the resulting system of equations
for the m unknown parameters; alternatively, a numerical search for a maximum in θ space
can be performed if a given model is not amenable to analytic resolution of the ML conditions.

An approach equivalent to maximizing the likelihood function L consists in finding θ̂ by
minimization of a statistical measure D(θ) that quantifies the discrepancy between the data
set {ci} and the corresponding predictions {gi(θ)} of the model. A possible choice for D is the
Kullback – Leibler divergence [S5], which, in the notation adopted above, is given by

DKL(θ) = 2
n
∑

i=1

ci ln

(

ci

gi(θ)

)

. (S2)

An alternative statistical measure for Poisson-distributed data such as photon counting his-
tograms is the Poisson deviance [S4]

DPoiss(θ) = 2

n
∑

i=1

{

ci ln
[

ci/gi(θ)
]

−
[

ci − gi(θ)
]

}

, (S3)

which is identical to DKL in the limit of an infinite number of detected photons, when the
term ci − gi(θ) tends to zero for unbiased models. Minimization of DKL(θ) and DPoiss(θ) was
performed by the Nelder – Mead downhill simplex algorithm [S8] as implemented by Scilab
(www.scilab.org). We found that both statistical measures converged to the same MLE θ̂ for
our data sets, with DPoiss showing somewhat faster convergence if the minimization was started
with suboptimal initial guesses for the model parameters.

2.2 Multinomial Distributions for Decay Histograms

The multinomial probability of observing the data set {ci} for the n photon counting channels
is given by [S6]

P (c1, . . . , cn|θ) =
N !

∏n
i=1 ci!

n
∏

i=1

pi(θ)ci , (S4)
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where N =
∑n

i=1 ci is the total number of detected photons and pi(θ) denotes the probability
that a photon will fall into detection channel i; these probabilities are normalized to the
detection window such that

∑n
i=1 pi(θ) = 1. The relationship between the model function

gi(θ) as defined above and the probabilities from Eq. (S4) is straightforward, gi(θ) = N ·pi(θ),
which can be substituted directly into Eqs. (S2) and (S3) for the minimization procedure. We
used the multinomial model of Eq. (S4) because it offers certain advantages over an approach
based on Poisson distributions [S6].

The probabilities pi(θ) can be calculated for a given decay model as [S6]

pi(θ) =

∫

∆i

R(t|θ) dt , (S5)

where ∆i is the temporal interval associated with the i-th counting channel and R(t|θ) dt is
the probability of detecting an emitted photon between t and t + dt after the excitation pulse.

2.3 Monoexponential Decay Curves

The probability density R(t|γ, T ) of a background-free monoexponential decay with rate γ is
[S6]

R(t|γ, T ) = γ exp
(

−γt
) 1

1 − exp(−γT )
, (S6)

which has been renormalized to the overall temporal width T of the detection window. Given
data acquisition with n channels of equal width (duration) tb = T/n, this means that the
probability of a photon being detected in channel i, Eq. (S5), takes the following form [S6]:

pi(γ, T, n) =

iT/n
∫

(i−1)T/n

R(t|γ, T ) dt = exp
(

−iγT/n
) exp(γT/n) − 1

1 − exp(−γT )
(S7)

For monoexponential decay on non-zero background, the probability of photon detection in
channel i changes to [S6]

pi(γ, b, T, n) =
b

n
+
(

1 − b
)

pi(γ, T, n) , (S8)

where b is the relative background contribution. Consequently, we used the model function
derived from Eq. (S8),

gi(γ, b) = Npi(γ, b, T, n) =
Nb

n
+ N

(

1 − b
)

pi(γ, T, n) , (S9)

to find the ML parameters for monoexponential decay curves by minimizing DKL or DPoiss as
defined in Eqs. (S2) and (S3). The results of applying the MLE procedure to monoexponential
decay curves constructed from photons selected from (predominantly) ON bins in single-QD
emission are discussed in Sec. 3 below.

2.4 Biexponential Decay Curves

The probability of photon detection in the i-th channel for biexponential decay curves on
non-zero background is [S6]

pi(γ1, γ2, a, b, T, n) =
b

n
+
(

1 − b
)

[

a pi(γ1, T, n) +
(

1 − a
)

pi(γ2, T, n)
]

, (S10)
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where γ1 and γ2 are the two decay rates, a is the relative strength of the γ1 component (not
the population fraction [S9]), and b the fraction of background counts. The model function
for the MLE of the biexponential decay parameters is then given by gi(γ1, γ2, a, b) = N ·
pi(γ1, γ2, a, b, T, n), which was used to obtain all the γ1 values reported in the main article for
biexponential decay curves of single QDs on substrates. (Our convention is to denote as γ1 the
slower decay component thought to be associated with emission of the “on” state.)

2.5 Biexponential Decay Curves with Normally Distributed Rates

All decay time histograms measured form QD ensembles in solution deviated significantly from
biexponential behavior. Gaussian distributions [S10, S11] of the decay rates for both on- and
off-states, γ1 and γ2, respectively, were therefore introduced to allow for the size and shape
distributions of the QDs, which means replacing Eq. (S10) by

pi =
b

n
+

1 − b√
2π

∞
∫

0

{

a

σ1
exp

[

−(γ − γ1)2

2 σ2
1

]

+
1 − a

σ2
exp

[

−(γ − γ1)2

2 σ2
1

]}

pi(γ, T, n) dγ , (S11)

where σ1 and σ2 are the standard deviations of the Gaussian rate distributions for on- and
off-state, respectively, and pi(γ, T, n) is given by Eq. (S7). Note that an approximation was
introduced in the normalization of Eq. (S11); the exact normalization factors for the two
components are

√
2√

πσ1

[

1 + erf

(

γ1√
2 σ1

)]

−1

and

√
2√

πσ2

[

1 + erf

(

γ2√
2 σ2

)]

−1

, (S12)

respectively. However, the γ1/σ1 ratios were found to be & 4 for QD525 and & 3 for QD655,
which means that for both QD species the error functions in the above expressions can be
approximated as unity, given that erf

(

4/
√

2
)

≈ 0.99994 ≈ 1 and erf
(

3/
√

2
)

≈ 0.997 ≈ 1.

Even for the fast component, where we found γ2/σ2 & 2, the approximation erf
(

2/
√

2
)

≈
0.954 ≈ 1 remains acceptable. The two normalization factors of Eq. (S12) can therefore be
simplified to 1/

(√
2πσ1

)

and 1/
(√

2πσ2

)

; the common factor of 1/
√

2π has been taken out
of the integral in Eq. (S11). Typically, the contribution of the fast component constituted a
few percent of the total number of luminescence photons, making it possible to find accurate
values of the γ1 (slow) component for each set of QDs. Tables S1 and S2 summarize the
ML parameters estimated following Eq. (S11) for the fluorescence decay curves measured for
QD525 and QD655, respectively, in water and sucrose solutions.

3 Fluorescence Decay Curves Constructed from ON Bins

Figure S2a shows part of a fluorescence intensity timetrace of a single QD525 on BK7, illus-
trating power-law blinking with alternating ON and OFF periods whose durations are broadly
distributed. The corresponding histogram of count rates for the full trace, Figure S2b, reveals
an OFF intensity level of . 1 count/(10 ms) and an ON state reaching ∼ 30 counts/(10 ms) on
average. A threshold of 24 counts/(10 ms), indicated by the dashed line in Figures S2ab, was
used for selecting high-level bins that can be expected to be dominated by ON state emission.
As can be seen in Figures S2cd, decay curves constructed from high-level bins do indeed ex-
hibit monoexponential behavior without noticeable contributions of the fast decay component
(γ2) associated with the OFF state. As expected, the uncertainty of the fit parameter for the
shorter trace, γ1 = (3.61 ± 0.02) · 10−2 ns−1, is larger than what can be achieved when using
all ON bins of the trace, γ1 = (3.627 ± 0.009) · 10−2 ns−1.
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Table S1: Fluorescence dynamics of QD525 in water and in sucrose solutions of varying refractive
index; decay curves were interpreted with a biexponential model, Eq. (S11), whose principal rates γ1

and γ2 exhibit Gaussian distributions with standard deviations of σ1 and σ2, respectively.

refractive index γ1

[

ns−1
]

σ1

[

ns−1
]

γ2

[

ns−1
]

σ2

[

ns−1
]

1.330 4.89 · 10−2 1.01 · 10−2 2.60 · 10−1 7.22 · 10−3

1.347 5.13 · 10−2 1.27 · 10−2 3.05 · 10−1 5.57 · 10−5

1.366 5.31 · 10−2 1.18 · 10−2 2.67 · 10−1 9.54 · 10−2

1.371 5.42 · 10−2 1.22 · 10−2 2.87 · 10−1 1.72 · 10−2

1.410 5.69 · 10−2 1.24 · 10−2 3.27 · 10−1 9.33 · 10−2

1.420 5.92 · 10−2 1.32 · 10−2 3.05 · 10−1 1.14 · 10−1

1.440 6.15 · 10−2 1.46 · 10−2 3.07 · 10−1 1.07 · 10−1

1.455 6.28 · 10−2 1.43 · 10−2 3.32 · 10−1 1.30 · 10−1

1.460 6.48 · 10−2 1.60 · 10−2 3.65 · 10−1 1.61 · 10−1

Table S2: Fluorescence dynamics of QD655 in water and in sucrose solutions of varying refractive
index; decay curves were interpreted with a biexponential model, Eq. (S11), whose principal rates γ1

and γ2 exhibit Gaussian distributions with standard deviations of σ1 and σ2, respectively.

refractive index γ1

[

ns−1
]

σ1

[

ns−1
]

γ2

[

ns−1
]

σ2

[

ns−1
]

1.330 2.59 · 10−2 8.60 · 10−3 1.02 · 10−1 3.18 · 10−2

1.347 2.74 · 10−2 8.70 · 10−3 1.09 · 10−1 3.88 · 10−2

1.366 2.80 · 10−2 9.50 · 10−3 1.21 · 10−1 3.74 · 10−2

1.371 2.82 · 10−2 8.95 · 10−3 1.02 · 10−1 2.95 · 10−2

1.410 3.03 · 10−2 1.01 · 10−2 1.50 · 10−1 4.47 · 10−5

1.420 3.06 · 10−2 9.63 · 10−3 1.22 · 10−1 3.87 · 10−2

1.440 3.22 · 10−2 1.08 · 10−2 1.90 · 10−1 3.83 · 10−4

1.453 3.29 · 10−2 1.09 · 10−2 2.11 · 10−1 1.66 · 10−4

1.455 3.23 · 10−2 1.02 · 10−2 1.24 · 10−1 3.01 · 10−2

The uncertainties δγ1 are crucial for the estimation of the detection limit Nlim as given by
Eq. (4) of the main article. We therefore used the bootstrap method [S8] to determine the
uncertainties of the decay parameters that we obtained from the MLE analysis detailed in
Section 2. The bootstrap method consists in creating synthetic data sets from a given decay
curve by randomly selecting N0 points from the experimental data. This random selection
process is implemented as drawing with replacement, which means that each data point has
the same probability to be chosen in each draw, irrespective of whether it has already been
selected in earlier draws. Each synthetic data set derived in this manner will therefore have a
random fraction of the original data points missing (∼ 37 % on average), while a number of the
included data points is duplicated (and, on increasingly rare occasions, triplicated, quadrupled,
etc.) such that the overall length N0 of the original data set is conserved. The ensemble of
synthetic data sets thus obtained is then subjected to the same analysis as the measured data;
the resulting distributions of the fit parameters furnish a good estimation for how precisely
the parameters can be known from the data, provided that the measured data points can be
assumed to be independent and identically distributed [S8]. All values of Nlim reported in
the main article are based on uncertainties δγ1 obtained from the sample standard deviations
of bootstrap estimations with 500 synthetic data sets for each decay curve. We furthermore
verified that the mean value of γ1 obtained from the synthetic data sets is consistent with the

S7



co
un

ts
/(

10
 m

s)

time (s)

(a)

0

10

20

30

40

50

100 125 150 175 200 225

co
un

ts
/(

10
 m

s)

time (s)

(a)

0

10

20

30

40

50

100 125 150 175 200 225
occurrence

(b)

0 1500 3000

10

20

30

40

50

co
un

ts

delay (ns)

(c)

25 seconds

1

10

100

0 10 20 30 40 50 60 70 80 90

co
un

ts

delay (ns)

(d)

700 seconds100

103

0 10 20 30 40 50 60 70 80 90

Figure S2: Fluorescence intensity timetraces and decay curves of a single QD525 on BK7. (a) Part of a
700 s timetrace, showing the succession of ON and OFF periods (blinking) in the fluorescence emission of
a single QD525. The trace was generated by binning photon arrival time data (instrumental resolution:
100 ns) into aligned intervals of 10 ms duration. The horizontal dashed line indicates the threshold
subsequently used to select timebins dominated by ON photons. (b) Histogram of intensity levels
observed in the full timetrace. The abscissa of the histogram is oriented vertically so that it coincides
with the intensity axis of the trace in (a); the horizontal axis marks the number of occurrences for each
intensity level. (The two bars not fully visible in the plot correspond to 7799 occurrences of 0 counts and
5093 occurrences of 1 count per timebin, respectively.) (c) Fluorescence decay histogram constructed
from high-level timebins that occurred during the first 25 seconds of the measurement (dots). The solid
line represents a monoexponential fit with a decay rate of γ1 = (3.61±0.02)·10−2 ns−1. (d) Fluorescence
decay curve constructed from all high-level bins of the entire 700 s timetrace (dots). The line shows the
monoexponential fit with γ1 = (3.627 ± 0.009) · 10−2 ns−1 and a background of (16 ± 1) counts.

result of the ML analysis of the corresponding original data set.

4 The Bruggeman Effective Medium Approach

The Bruggeman effective medium approach treats each constituting phase of a mixed medium
equally as an inclusion in the effective medium itself [S12], which avoids the often somewhat
arbitrary distinction between “host” and “guest” components that would otherwise have to
be introduced. We apply this approach to a sphere of interaction with radius R, centered
on the QD core, which is occupied by air and the part of the substrate intersecting with the
interaction sphere in the shape of a spherical cap. The corresponding effective refractive index
n̄ is then obtained [S13] as the positive real solution of the equation

fs · n2
s − n̄2

n2
s + 2n̄2

+
(

1 − fs

)

· n2
air − n̄2

n2
air + 2n̄2

= 0 , (S13)
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where ns and nair are the refractive indices of the substrate and of air, respectively. The volume
fraction fs of the substrate in the interaction sphere was calculated by dividing the volume of
a spherical cap of height hs,

Vs = πh2
s

(

R − hs/3
)

, (S14)

by the total volume of the interaction sphere, V = 4
3πR3. The height hs of the spherical cap

occupied by the substrate is hs = R−d, where d is the distance from the core-centered emission
dipole to the surface of the substrate.
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