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S1. Strain-induced modification of electrical conduction in graphene nanoribbons 

The electronic properties of graphene nanoribbons (GNRs) in absence of externally 

induced strain depend on their width, aspect ratio, purity, edge type (zigzag or armchair) relative 

to the bias direction [1-6], and the presence of passivation at the edges [7], as well as the 

passivation content [7, 8]. Particularly relevant to our discussion, the GNR geometry determines 

the effective operating bias points suitable for strain detection when coherent transport dominates 

[1]. Further, geometrically perfect edges without chemical passivation are currently unlikely to 

be obtained experimentally, and thus the appropriate measurement strategy must be determined 

for a particular GNR. 

Nevertheless, the relative variation of the electrical current around the baseline values 

due to deflection-induced strains can be estimated at the order-of-magnitude level for idealized 

cases. Furthermore, the nanomechanical deflections reported in the main text are for a zigzag-

edged GNR and are generally valid for armchair GNRs of similar dimensions. Therefore, our 

discussion of the strain value estimates is not necessarily limited to the particular GNR type used 

in our MD simulations. Further, as seen in Eq. (S4) below and mentioned in the main text, a 

similar nanomechanical response can be obtained from GNRs of varying length and width 

(provided some requirements on the aspect ratio are met), thus allowing a degree of freedom in 

varying the dimensions, crucial for the design of the GNR properties in absence of strain. Here 
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we briefly present the basic mechanisms underlying the effect of uniaxial strains on the 

electronic properties of GNRs, while the numerical estimates are provided in section S2. 

The resistance of a GNR at a given appropriately selected bias point, excluding contact 

resistance for clarity, in the thermally activated regime is approximated as [9]: 

𝑅 =
𝑅0

|𝑡|2 (1 + 𝑒
𝐸𝑔𝑎𝑝

𝑘𝑇 ),   (S1) 

where 𝑅0 is the quantum resistance unit, |𝑡|2 is the effective transmission probability for 

electrons with a given energy E (as dictated by the bias), such that |𝐸 − 𝐸𝐹| > 𝐸𝑔𝑎𝑝 (𝐸𝐹 and 

𝐸𝑔𝑎𝑝 are the Fermi level and the bandgap, as determined by the GNR dimensions, edge, etc., 

respectively), and T is the temperature. In the thermally activated conduction regime expected to 

dominate the water-immersed GNR at room temperature, the effect of strain is primarily due to 

modification of the number of carriers proportional to 𝑒−
𝐸𝑔𝑎𝑝

𝑘𝑇  via strain-induced change of 𝐸𝑔𝑎𝑝, 

resulting in 
𝛿𝑅

𝑅
≈

𝛿𝐸𝑔𝑎𝑝

𝑘𝑇
 (independent of 𝐸𝑔𝑎𝑝 itself in the perturbative approximation), where 

𝛿𝐸𝑔𝑎𝑝 ≈ 3𝑡0𝜀, (𝑡0 ≈ 2.7 𝑒𝑉 is the nearest-neighbor electron hopping energy for graphene, 𝜀 is 

the strain), thus yielding 
𝛿𝑅

𝑅
≈

3𝑡0𝜀

𝑘𝑇
. The theoretical tight-binding estimate 𝛿𝐸𝑔𝑎𝑝 ≈ 3𝑡0𝜀 is close 

to the results obtained with density functional theory calculations for both zigzag and armchair 

GNRs under uniaxial strain [5]. 

For completeness, in the T = 0 K limit, Eq. (S1) is effectively replaced by the coherent transport 

term: 

𝑅 =
𝑅0

|𝑡|2    (S2) 
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and the effect of strain is via modification of  the effective (quantized) transmission probability 

|𝑡|2. In this case, the effect of strain on a gateless GNR is negligible [10]. However, around an 

appropriately selected bias point, strain can indeed be detected in an interferometer-type 

measurement setup with a relative variation of R estimated at 
𝛿𝑅

𝑅
= −

𝛿|𝑡|2

|𝑡|2 ≈
ℎ2

𝐿𝑎0
, where h is the 

out-of-plane deflection, L is the effective GNR length, and 𝑎0 is the C-C interatomic distance in 

graphene [10].  

In the next sections we estimate the out-of-plane deflection h and evaluate the order of 

magnitude of the changes in resistance induced by the strains due to forces expected in our 

system.  

S2. GNR deflection with lateral pre-strain 

As a rough estimate, the maximum out-of-plane deflection h of an edge-clamped GNR of 

length L due to force F applied at L/2 is the solution of the following cubic equation: 

𝐹 =
2𝐸2𝐷𝑤ℎ

𝐿2 (𝜀0𝐿 +
2ℎ2

𝐿
),  (S3) 

where 𝐸2𝐷, w, and 𝜀0 are the two-dimensional Young’s modulus of graphene, GNR width, and 

the initial pre-strain along the GNR length, respectively. A reasonable agreement with the 

simulated data was obtained with 𝐸2𝐷 ≈ (𝐸3𝐷ℎ0) = 106 𝑁/𝑚, where 𝐸3𝐷 = 1.06 𝑇𝑃𝑎 and 

ℎ0 = 0.1 𝑛𝑚 are the 3-D Young’s modulus of graphene and its effective “continuum” thickness, 

respectively [11].  

For L = 15.5 nm, F = 75 pN, and 𝜀0 = 0.5 %, Eq. (S3) yields h = 2.24 Å, in reasonable 

agreement with the results in Figs. 3 (a, b) in the main text (results consistent with Fig. 3 (a, b) 
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were also obtained in MD simulations with the DNA atomic charges set according to AMBER 

[12]). Without pre-strain (𝜀0 = 0), the central deflection is: 

ℎ = 𝐿 (
𝐹

4𝐸2𝐷𝑤
)

1/3

,   (S4) 

yielding ℎ𝜀0=0 = 5.27 Å. The deflection-induced strain in this case is 𝜀 ≈ 2 (
ℎ

𝐿
)

2

= 0.23 %, 

which causes an estimated 
𝛿𝑅

𝑅
≈

𝛿𝐸𝑔𝑎𝑝

𝑘𝑇
=

3𝑡0𝜀

𝑘𝑇
 = 71% and 

𝛿𝑅

𝑅
≈

ℎ2

𝐿𝑎0
= 12%, according to Eqs. (S1) 

and (S2), respectively. For the A-T binding with a critical force of F = 50 pN,  ℎ𝜀0=0 = 4.60 Å, 

yielding the 
𝛿𝑅

𝑅
 estimates of 32 % and 5.3 %, according to Eqs. (S1) and (S2), respectively.  

With the experimentally obtained 𝐸2𝐷 = 352 𝑁/𝑚 [13], Eq. (S3) underestimates the deflections 

obtained in our simulations with 𝜀0 = 0.5 %. However, with lower 𝜀0, it yields deflections of 

comparable magnitude, and thus all of the estimates made here remain valid. For example, with 

𝐸2𝐷 = 352 𝑁/𝑚 and 𝜀0 = 0.1 %, we obtain a deflection value of 1.9 Å for the C-G pair, and 

thus identical 
𝛿𝑅

𝑅
 estimates. Without pre-strain, the maximum deflection according to Eq. (S2) is 

ℎ𝜀0=0 = 3.1 Å, and thus 
𝛿𝑅

𝑅
≈

𝛿𝐸𝑔𝑎𝑝

𝑘𝑇
=

3𝑡0𝜀

𝑘𝑇
 = 24% from Eq. (S1). Within the approximations 

made, all of these estimates are valid for GNRs of appropriately scaled dimensions.  

S3. Additional note on the GNR edge effects 

A very narrow GNR, such as the one used in our simulations, would present a region of 

locally reduced conductance in the nanopore region, given the closeness of the pore edge to the 

GNR edge.  An additional effect on the electrical conductivity thus would arise from the local 

strain inhomogeneity near the pore, similar to the effects of local inhomogeneous strains shown 
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elsewhere [1, 14]. Although only demonstrated in vacuum at zero temperature, the electronic 

properties of a narrow GNR could also be affected by the fact of nucleobase presence in the pore, 

even without functionalization [15]. However, these effects would be virtually non-existent in a 

considerably wider GNR at a finite temperature, given that the pore diameter would remain the 

same. Interestingly, a contribution from the pseudomagnetic field effect could arise in addition to 

the effects discussed earlier[16] in a wide GNR deflected by an effectively point force at the 

center. 

S4. Effects of rippling 

It has been shown previously that the local modulation of the graphene’s nearest-

neighbor electron hopping energetics by flexural ripples [17] can be described by the emergence 

of a gauge field [18-20]. An estimate of the time-averaged effect of the ripples can be obtained 

from considering them as carrier scatterers, which leads to an overall increase of the electrical 

resistivity [21], in addition to the temporal modulation of the current. In the long-wave 

approximation, this excess resistivity 𝜌𝑟 increases with the rippling strength (e.g., in terms of the 

mean-square out-of-plane displacement 〈ℎ2〉), while its size-scaling properties depend on the 

rippling Fourier scaling law ℎ𝑞
2 [21]. Here, we discuss the qualitative effect of FGNR rippling on 

𝜌𝑟 during DNA translocation by considering the wave-vector distributions ℎ𝑞
2 and the 〈ℎ2〉 

averages, as obtained during the passage of G and non-G residues through the FGNR (see section 

S5 for the calculation details). Shown in Fig. S1 are the ℎ𝑞
2 distributions for the FGNR at T = 300 

K, along with the raw rippling data in the corresponding inset. As shown, the distributions are 

similar during the passage of G and non-G residues, although the rippling strength during G 

passage is consistently lower. The latter is expected, because even the relatively faint lateral 
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strain can significantly suppress thermal flexural fluctuations.[22] Direct calculations of 〈ℎ2〉 

(∝ ∫ ℎ𝑞
2 𝑑Ω𝑞, where 𝑑Ω𝑞 is an area element in the 2-D reciprocal space) confirm this 

observation, yielding a decrease from 1.63 Å2 to 1.35 Å2 during the passage of non-G and G, 

respectively. An accurate quantitative estimate of  ∆𝜌𝑟/𝜌𝑟  due to FGNR deflection induced 

strain would crucially depend on the dimensions, as well as the fabrication methods of an 

experimentally relevant GNR. However, the relatively high sensitivity of the ripple scattering 

mechanism to 〈ℎ2〉 (and thus to deflection-induced strain) can be revealed via previously 

estimated 𝜌𝑟 ∝ 𝑛𝑟/𝑛𝑐 [21], where 𝑛𝑟 ∝ 〈ℎ2〉2 and 𝑛𝑐 ∝ 𝑒−
𝐸𝑔𝑎𝑝

𝑘𝑇  is the effective sheet density of 

the scatterers and charge carriers, respectively. As a result of excess strain due to G-induced 

FGNR deflection, 
∆𝜌𝑟

𝜌𝑟
∝

∆𝑛𝑟

𝑛𝑟
−

∆𝑛𝑐

𝑛𝑐
. Here, 𝑛𝑟 ∝ 〈ℎ2〉2 is considerably reduced (by ~30 %, from 

the 〈ℎ2〉 estimates above) and ∆𝑛𝑐/𝑛𝑐 ∝ −
3𝑡0𝜀 

𝑘𝑇
< 0 due to strain-induced bandgap modulation, 

estimated at ~10 % above. The net result of this competition between strain-induced decreased 

scattering and a decrease in the number of charge carriers is reduction of 𝜌𝑟 by ~20 %. 

Therefore, if ripple scattering is expected to significantly contribute to the overall resistance in a 

given GNR, the described effect of strain-induced ripple suppression may become an additional 

mechanism contributing to the net current variation.  

S5. Out-of-plane rippling statistics 

For the t-th MD frame, an individual ℎ𝑞
2 distribution was calculated directly from the 

atomic population of the FGNR as the corresponding 2-D Fourier transform of (𝑧𝑖 − 𝑧�̅�)2, where 

𝑧𝑖 is the i-th atom’s position along Z and 𝑧�̅� is the local plane level at time t. The distributions ℎ𝑞
2 



 
 

 
S7 

 

were presented as averages of distributions over multiple frames for each translocation portion 

(G and non-G), similarly to the statistical data presented elsewhere [17, 23, 24]. 

The t-th per-frame average from N atoms in the GNR is 

〈ℎ𝑡
2〉 =

1

𝑁−1
∑ (𝑧𝑖 − 𝑧�̅�)2,𝑁    (S5) 

and the grand average per multiple frames is calculated as 〈ℎ2〉 =
1

𝜏
∑ 〈ℎ𝑡

2〉𝜏 . Note that for a 

membrane deflected at the center, the use of a global “plane level” 𝑧�̅� =
1

𝑁
∑ 𝑧𝑖𝑁  is incorrect. 

Therefore, we used the local plane level 𝑧�̅�,𝑖 equal to the per-atom running time-average obtained 

from an infinite impulse response (IIR) filter. Ripple suppression was independently confirmed 

by using Eq. (S5), while calculating 𝑧�̅�,𝑖 from a second-order polynomial surface fit at every MD 

frame.  The data in Fig. S1 and the grand averages discussed in section S4 were calculated over 𝜏 

= 20 ns long periods of G and non-G translocation (see inset of Fig. S1; translocation data from 

Fig. 3 (b)). The frame spacing was 50 ps, resulting in a total of 400 frames used in the averaging 

for each passage. 
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Figure S1. FGNR rippling distributions ℎ𝑞
2 during the passage of G and non-G nucleobases. The 

inset shows the averaging regions, the raw 〈ℎ𝑡
2〉 data (as defined in section S4), as well as the 

〈ℎ𝑡
2〉 running average data. 
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