3D Porous Ni-Cu Alloy Film for High-performance Hydrazine

Electrooxidation

Ming Sun, Zhiyi Lu, Liang Luo*, Zheng Chang*, Xiaoming Sun

Supporting information

Fig. S1 Cu 2p1/2, Cu 2p3/2 and Ni 2p3/2 orbital binding energy regions in the full XPS spectrum of the optimal Ni–Cu alloy film and the calculated Cu/Ni atomic ratio of 1.34/1.

Fig. S2 SEM images of the Ni-Cu alloy films prepared at the different electrode position potentials for the same time of 400 s: a) -1.2 V; b) -1.5 V; c) -1.9 V and prepared at the same potential of -1.8 V for the different electrode position time: d) 100 s; e) 200 s; f) 600 s.

Fig. S3 SEM images of control samples: a) Cu array film; b) Ni array film.

Fig. S4 SEM image of the optimal Ni-Cu alloy film after a long time stability testing.

Fig. S5 The digital images showing the bubble generation behaviors on a) Cu foil and b) Ni foil.

Sample	Conditions	Current density	Stability	Ref.
Highly metallic Ni NPs	0.1M N ₂ H ₄ , 0.1M NaOH	608 A g ⁻¹ at 0.1V (vs. RHE)	_	31
Ni ₈₅ Fe ₁₅ /PEI-MoS ₂	$0.1M N_2H_4, 0.15M NaOH, 60^{\circ}C$	520 A g ⁻¹ at -0.2V (vs. SCE)	~30%	29
Ni _{0.33} Zn _{0.67}	5% N ₂ H ₄ , 1M KOH, 60°C	500 A g ⁻¹ at 0.35V (vs. RHE)	—	22
Ni ₅₅ Fe ₄₅	$0.1M \ N_2H_4, \ 0.015M \ KOH, \ 60^{\circ}\! \mathbb{C}$	350 A g ⁻¹ at -0.4V (vs. RHE)	_	33
Ni-Mn(Fe, Zn) /C	1M N ₂ H ₄ , 1M KOH, 60°C	200 A g ⁻¹ at 0.2V (vs. RHE)	_	34
Ni _{0.4} La _{0.6} /C	1M N ₂ H ₄ , 1M KOH, 60°C	88.6 A g ⁻¹ at 0.22V (vs. RHE)	—	30
Ni-Zr	2M N ₂ H ₄ , 1M NaOH	165 mA cm ⁻² at -0.8V (vs. NHE)	—	28
$Ni_{80}Fe_{20}/PEI\text{-}rGO_{10:1}$	0.1M N ₂ H ₄ , 0.15M NaOH	57 mA cm ⁻² at 0.5V (vs. SCE)	~17%	32
Ni ₁ Co ₁	0.1M N ₂ H ₄ , 1M KOH, 60°C	36 mA cm ⁻² at 0.1V (vs. RHE)	39%	35
Ni _{0.87} Zn _{0.13} /C	0.1M N ₂ H ₄ , 1M KOH	5 mA cm ⁻² at 0.35V (vs. RHE)	—	23
Ni _{0.43} Cu _{0.57}	0.1M N ₂ H ₄ , 3M NaOH	300 mA cm ⁻² at -0.6V (vs. SCE)	80%	This work

Table S1 HzOR performance comparison of the Ni-based alloys in our work and some references.