SUPPORTING INFORMATION

Dense arrays of cobalt nanorods as rare-earth free permanent

magnets

E. Anagnostopoulou,^a B. Grindi, ^a L.-M. Lacroix, ^a F. Ott,^b I. Panagiotopoulos,^c G. Viau^{a,*}

Sample R_{17} (d_m = 17.5 nm, L_m=120 nm)

Sample R_{24} (d_m = 24 nm, L_m=190 nm)

Sample R_{22} (d_m = 22 nm, L_m=166 nm)

Sample R_{31} (d_m = 31 nm, L_m = 190 nm)

Sample R_{28} (d_m = 28 nm, L_m = 190 nm)

Fig. S1 Transmission electron microscopy images of cobalt nanorods prepared by the polyol process, mean diameter, d_m , mean length, L_m . Scale bars denote 200 nm.

Tab. S1 Details on the rod washing prior to their alignment and drying and squareness of the M(H) loop after alignment.

- A1 and A2 (standard procedure): the rods were washed three times before their dispersion in chloroform and alignment ;
- A3: several additional washings were done;
- A4: alignment of large scale samples, the washing of the rods was lower than the standard procedure.

Sample	d _m /L _m	Washing	Washing	SQ
	(nm)	Solvent	procedure	
R ₁₇ A1	17.5/120	chloroform	standard	0.86
R ₁₇ A2	17.5/120	toluene	standard	0.75
R ₂₂ A1	22/166	chloroform	standard	0.93
R ₂₂ A2	22/166	toluene	standard	0.79
R ₂₂ A3	22/166	chloroform	extended	0.96
R ₂₄ A2	24/190	toluene	standard	0.74
R ₂₈ A2	28/190	toluene	standard	0.81
R ₂₈ A4	28/190	toluene	limited	0.57
R ₃₁ A4	31/190	toluene	limited	0.69

Fig. S2 Thermogravimetric analysis of $m_0 = 22.8$ mg of the sample R₃₁A4 (a) oxidation in air up to 700°C associated with a mass gain $\Delta m_1 = +5.99$ mg followed by (b) reduction at 700°C in H₂/Ar = 4/96 atmosphere associated with the mass loss $\Delta m_2 = -7.65$ mg. The cobalt mass fraction in this sample is $\% w(Co_{total}) = (m_0 + \Delta m_1 + \Delta m_2)/m_0 = 92.7\%$

Note that the presence of residual solvent in the needles can be observed in the first TGA measurement where a mass loss is observed at temperatures as low as 80°C which do not correspond to organic matter calcination but to simple solvent evaporation.