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I. The analytical model expansion theory
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Fig. S1. Schematics of the (a) transmission and (b) reflection metallic grating. The 
excited kth order cavity mode in gap areas is of upward and downward mode 

amplitudes . The refractive index in the upper layer, the gap area and  ( 0,1, 2,...)ka k 

the lower layer is ,  and  respectively. 1 1 1n   2 2 2n   3 3 3n  

Let’s consider a general 3-layer medium as shown in Fig. S1. The metallic grating is 
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placed in the middle layer; the lower layer is dielectric/metal for transmission/ 

reflection grating respectively. A transverse Magnetic (TM) plane wave illuminates 

the grating from the upper layer with arbitrary incident angle. There are multiple 

reflection and transmission diffraction orders governed by the grating equation. In the 

upper layer, the magnetic and electric field components can be written as,
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where, ( , ) is the wavevector of incident plane wave, and (0xk  1 2 2 2
0 1 0 0z xk n k k 

, ) is the wavevector of the nth diffraction order.0 2 / pxn xk k n   1 2 2 2
1 0zn xnk n k k 

Considering the metal as perfect electric conductor (PEC), the field in the gap area 

can be written as the superposition of all the waveguide modes between the two 

metallic walls,1
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where,  is the propagation constant of the waveguide mode of the 
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kth order.

In the lower layer for the transmission grating, the field can be written as,
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where, , . 3 2 2 2
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The boundary condition at z=0 yields, 
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and at z=h for transmission grating, the boundary condition requires,
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Considering the orthogonality of different diffraction orders, we multiply Eq. (4b) and 

(5b) by and then integrate over –p/2<x<p/2 respectively. It yields,e xnik x
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As a result, Rn, Tn can be expressed in terms of ,  as, ka
ka
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waveguide modes of different orders, then integrate in terms of x in the region –

w/2<x<-w/2 respectively, it yields,
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Substituting (7a) and (7b) into (8a) and (8b) respectively, it yields, 
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So far, the amplitude coefficients of the kth (k=0, 1, 2, …) cavity mode  can be ka

obtained by solve the linear equations defined by Eq. (9). Finally, substituting the 

solved amplitude coefficients back into Eqs. (7), we can readily obtain the reflection 

and transmission coefficients of arbitrary diffraction orders.

For the reflection grating as shown in Fig. S1b, the situation becomes much 

simpler. The boundary condition at z=h is simply Ex=0, which yields 
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. As a result, the downward amplitude coefficient  can be e e 0k ki h i h
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substituting it into (7a) and (9a) respectively, it yields,
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Now, we need only solve the upward amplitude coefficient  (k=0, 1, 2, …) for each ka

cavity mode by Eq. (13), and substitute  back into Eq. (12) to obtain the reflection ka

coefficients for arbitrary diffraction orders.

For the grating with ultra-narrow grooves (w<λ/2), only the fundamental cavity 

mode (k=0) is supported while the higher modes are cut-off, thus we can explicitly 

write the mode amplitude coefficient and reflection coefficient of the nth diffraction 

order as, 
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For the grating with broad groove width (w/p~0.5), in our interesting wavelength 

range, only the first two cavity modes (k=0, 1) are not cut-off. As a result, we only 

need to solve a 2×2 matrix to obtain  and , and then substitute them into Eq. (12) 0a
1a

to obtain the reflection coefficient of kth order as follows,
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II. Comparison between extraordinary optical transmission and diffraction. 

Based on the analytic model theory in part I, we plot the transmittances and 

reflectances of different diffraction orders for a large range of incident angle and 

wavevector in Fig. S2. We can split the (θ0, k0) plane into multiple subregions by the 

Rayleigh anomaly (RA) curves defined by, 

,                               (17)0 0 0sin 2 / ,  = 1, 2,...k n p k n     

which are automatically shown by the abrupt color changes as labeled in Fig. S2d. By 

varying the grating height, we can tune the resonance of the cavity mode in different 

subregions. When 2h=0.7 for the transmission grating (Fig. S2a-S2c), the lowest 

resonance of the cavity mode happens in the most left-down subarea, where only T0 

and R0 channel are allowed to propagate in free-space. The resonance leads to the 

total suppression of R0 (blue-dip in the most left-down subregion in Fig. S2a) and 

enhancement of T0 (red-peak in the most left-down subregion in Fig. S2b). The 

resonance transmission is referred to as the well-known extraordinary optical 

transmission (EOT) phenomenon which is widely studied in the past decades 2. By 

decreasing h to 0.25 and adopting the reflection grating geometry (Fig. S2d-S2f), the 

resonance shifts to the second lower subregion where only -1st, and 0th reflections are 

allowed to propagate (the white numbers denoted in Fig. S2d). Similarly, the 

resonance suppresses the ordinary specular reflection R0, while enhances the -1st 

reflection R-1 to unity. And we refer to such resonance phenomenon as extraordinary 
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optical diffraction (EOD). By further decreasing the height, the cavity mode 

resonance will shift to subregions with higher diffraction orders. For h=0.15 (Fig. 

S2h-S2j), the resonance extends to the subregion bounded by 1st, -2nd and -3th RA 

curves. In this subregion, there exist the 0th, -1st and -2nd propagating channels. The 0th 

reflection is again totally suppressed, but the R-2 is not enhanced to unity due to the 

coexistence with R-1. Instead, the efficiency for R-2 and R-1 are both enhanced to about 

0.5 as shown Fig. S2j.

Note that, we can’t enhance -nth (n>1) diffraction order to 100% by the cavity 

mode resonance since when -nth diffraction order is propagating, the lower orders (-1st, 

-2nd, …, -(n-1)th) are also allowed to propagate (Fig. S2d) and we can’t find a 

subregion where there are and only are the 0th and -nth (n>1) propagating diffraction 

orders.
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Fig. S2. The evolution from EOT to EOD by simply varying the resonance position of 
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the cavity mode. (a-c) show the EOT for transmission grating with 2h=0.7. The cavity 
mode resonance locates bellow the -1st RA, where only 0th diffraction order is allowed 
to propagate. R0 is suppressed while T0 is enhanced on resonance. (d-f) show the EOD 
for reflection grating with h=0.25. The cavity mode resonance locates in the subregion 
where only the 0th and -1st reflections is allowed. R0 is completely suppressed while R-

1 is enhanced to unity on resonance. (h-j) show the case when we further shift the 
resonance to higher frequencies (h=0.15) where the -2nd, -1st and 0th reflections are 
allowed. R0 is totally suppressed while R-1 and R-2 are simultaneously enhanced to 
about 0.5 respectively. The first and second row show the specular reflectance R0 and 
the diffraction efficiency for a particular order: (b) T0, (e) R-1, and (i) R-2 respectively 
with varying incident angle and wavevector. The last row show the spectra with a 
particular incident angle (c) 0o, (f) 30o, and (j) 60o for the corresponding grating.

III. The origin of the broadband high diffraction efficiency

It is well known that, the effect based on resonance is always of narrow bandwidth. 

The EOD due to CM also has a narrow bandwidth for small gap width. One can 

increase the gap width w to reduce the resonance strength to obtain a relatively broad 

bandwidth, but solely one CM can’t lead to a flat-top high efficiency for R-1 as shown 

in Fig. S3a-S3b. At the same time, the CM1 emerges when w is increased to 0.5p. By 

only considering the contribution of CM1 ( ), the he narrow resonance of CM1 will 1a

lead to the peak (dip) of R-1 (R0). In the real system, CM0 and CM1 coexist. The 

interference between the broad CM0 and narrow CM1 leads to an asymmetry Fano 

lineshape near λ=0.82 (Fig. S3f). As CM1 is located in the marginal position of CM0, 

the Fano interference will push up R-1 for λ>0.82, while pull down R-1 sharply for λ 

slightly <0.82. As a result, a flat-top shape of R-1 is formed as shown by the solid 

green curve in Fig. S3f.
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IV. Modulation range of extraordinary optical diffraction.

The EOD can happen for a large range of incident angle and wavelength when the 

duty-cycle is near w/p≈0.5. In order to realize the wavefront shaping, we should have 

a large modulation range of phase. For a usual metasurface, people always look for a 

full phase modulation range (0-2π) by changing the shape or size of the unit-cell 

structure. Here, in our holographic metasurface based on mode cavity resonance, we 

do not modulate phase directly, but modulate the phase gradient by the grating period. 

If a wavefront has steep phase gradient profile, we require a large range of applicable 

period to shape such complex wavefront. From Fig. S4a, we see that for a fix 

wavelength, the -1st reflectance can reach unity for a large range of p and incident 
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angle. The available range of p is only restricted by the -1st RA and the high order (1st) 

resonance of cavity mode. At a specified incident angle (Fig. S4b), we can clearly see 

the flat-top reflectance of -1st order with respect to p, allowing us to modulate the 

phase of complex wavefront with high conversion efficiency. For the realistic silver 

grating operating at visible frequencies (Fig. S4c and S4d), the period range for high -

1st diffraction is still survival, although the bandwidth is narrow than the PEC grating 

due to the much lower resonance of CM1. For example, in the grating with carrier 

period 424nm, operating wavelength 600nm and incident angle θ0=45o, the bandwidth 

for diffraction efficiency over 90% can be obtained as 375nm to 500nm (green curve, 

Fig. S4d).
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Fig S4. The applicable range of grating period p for EOD. (a) The -1st reflectances 
with varying incident angle θ0 and grating period p for PEC grating with height 
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h=0.225, fixed duty cycle 0.5 and fixed working wavelength λ=1. (b) The 0th and -1st 
reflectances as a function of p at the vertical cut at θ0=45o in (a). There is a wide flat-
top range of R-1 from p=0.7 to 1.05, allowing for a large range of phase modulation 
and thus promising the shaping of complex wavefront with high efficiency. (c) The 
The -1st reflectances with varying incident angle θ0 and grating period p for silver 
grating with height 130nm, fixed duty cycle 0.5 and fixed working wavelength 
λ=600nm. (d) The 0th and -1st reflectances and the absorption A as a function of p at 
the vertical cut at θ0=45o in (c). There is a wide flat-top range from p=375nm to 
500nm for -1st reflectance over 90%.

V. Extraordinary optical diffraction due to excitation of high order cavity 

modes.

Besides the lowest order resonance, high order resonances of the cavity mode also can 

lead to extraordinary total reflection in the -1st diffraction order as shown in Fig. S5. 

The nth resonance of cavity mode happens when the groove height is a little smaller 

than the nth Fabry-Perot resonance condition h~(n+1/2)λ/2. The incident light will be 

completely reflected in the -1st diffraction channel for those groove heights as shown 

in Fig. S5d-S5f. Instead, for the off-resonance case with h=nλ/2, the incident light will 

go to the ordinary specular reflection path as shown in Fig. S5h-S5j. However, the 

band width for high order resonances are intrinsically narrower than the 0th order 

resonance (Fig. S5a-S5c). Moreover, the required large groove height for high order 

resonance makes the fabrication much more difficult. Therefore the lowest resonance 

of cavity mode is the optimal condition for EOD. 
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Fig. S5. EOD due to high order resonances of cavity mode. (a-c) are the -1st 
reflectance with varying incident angle θ0 and wavevector k0 for different groove 
height: (a) h=0.225, (b) h=0.725, (c) h=1.225. (d-f) show the corresponding field 
patterns (Hy) at the (d) 0th (h=0.225), (e) 1st (h=0.725), and (f) 2nd (h=1.225) resonance 
respectively. For comparison, (h-j) show the field patterns for off resonance at 
different height: (h) h=0.5, (i) h=1, and (j) h=1.5 respectively. The grating period and 
groove width in (a-j) are p=1 and w=0.5 respectively. The wavelength and incident 
angle in (d-j) are λ=1 and θ0=30o respectively.

VI. Extraordinary optical diffraction for real metal in different frequency range.

In the analytic model expansion theory, the metal is considered as PEC, which is a 

good approximant of real metal in lower frequency band such as mid-infrared, 

Terahertz and Microwave range. In the optical frequency range, the dispersion and 

loss of metal will play a significant role. However, we can still obtain similar 

conclusions by simulating the reflectances of different diffraction orders with the 

Rigorous Coupled Wave Analysis (RCWA) method. Using the geometry parameters 

predicted by analytic model, we can still obtain a relatively broad dip for R0 and a 

broad peak for R-1, as shown in Fig. S6. The peak value of R-1 can’t reach unity due to 
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the metallic loss. However, it can also reaches value as high as 0.95. And there is still 

a wide-angle range for EOD. The -1st reflectance for grating operating in the near-

infrared range (1μm~3μm) is almost the same as the PEC results (Fig. S3e). When we 

increase the working frequencies (0.5μm~1.5μm in Fig. S6b), the position of CM1 

will shift to lower frequencies, leading to a decrease of the upper bound of the 

bandwidth. It is because the real metal has finite skin depth, the cavity mode 

resonance will be replaced by the localized gap surface plasmon resonance. The 

propagating constant of the gap surface plasmon is greater than that of the PEC 

waveguide mode.
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Fig. S6. -1st reflectance with varying incident angle θ0 and frequencies for metallic 
reflection grating in optical frequencies calculated by RCWA. The parameters for the 
grating are (a) p=1.5μm, w=750nm, and h=337.5nm; (b) p=750nm, w=375nm, 
h=202.5nm; (c) p=424nm, w=212nm, h=130nm. The metal is considered as silver, 
whose refractive index is taken from the experimental data.3

VII. Extraordinary optical diffraction due to excitation of propagating surface 

plasmon polaritons.

For the EOD due to excitation of cavity mode, the groove height should be thick 

enough so as to support the cavity mode in the vertical direction. For metallic grating 

with shallow groove height, the propagating surface plasmon mode will by excited 
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when the parallel wavevector of incident light plus the grating’s reciprocal lattice 

vector matches the propagating constant of the surface plasmon mode kspp,

.                                        (18)
 

 
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0 0

2sin  0
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In Fig. S7a and S7b, the surface plasmon modes near the 1st ( ) and -0
0

sin = sppk
k p

 

2nd ( ) RA are excited. Since kspp is a little larger than k0, the surface 0
0

2sin sppk
p k
  

plasmon resonance is slightly below the 1st and -2nd RA curve (red peak curve in Fig. 

S7b). Thereby, those surface plasmon resonances are just inside the subarea where 

only R0 and R-1 are the allowed propagating channels. As a result, R0 is suppressed 

while R-1 is enhanced at the surface plasmon resonances. Note that, due to the 

inevitable loss of metal, there are strong absorptions at the surface plasmon 

resonances (Fig. S7c), which will decrease the peak value of R-1 to about 0.5. The 

surface plasmon modes just below the -1st RA ( ) are also excited. 0
0

sin sppk
p k
  

Those surface plasmon resonances lead to the perfect absorption (red peak in the left-

down corner of Fig. S7c) as reported previously,4 because only R0 is the only 

propagating channel in this subarea. Figure S7 d-S7f show the field patterns at the red 

peaks in Fig. S7b for different incident angles. We can clearly see the surface plasmon 

wave in the metal-air interface, which further proves that the enhancement of R-1 

indeed is due to the excitation of the propagating surface plasmon mode. Note that, 

the EOD due to propagating surface plasmon is strongly dependent on incident angle 
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and the bandwidth is ultra-narrow. Thereby, it is not desirable for wide-angle and 

broad band wavefront shaping. It may be used in other areas such as sensing and 

switching applications which require sharp and angle-sensitive characteristics.
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Fig. S7. The (a) 0th, (b) -1st order reflectance and (c) absorption with varying incident 
angle θ0 and frequencies for metallic reflection grating with shallow groove height 
calculated by RCWA. The parameters for the grating are p=600nm, w=100nm, and 
h=30nm respectively. The metal is considered as silver whose refractive index is 
taken from the experimental data 3. The lower panel show the field patterns (|Hy|2) at 
the R-1 peak for different incident angle and wavelength: (d) 5o, 586nm, (e) 20o, 
500nm and (f) 45o, 540nm.
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