Supplementary Information

Experimental

Synthesis of HfO₂ and ZrO₂ based Nanoparticles

The HfO₂ and ZrO₂ based nanoparticles were synthesized by the modified sol-gel method as reported previously.^[1] A fixed amount of hafnium isopropoxide (Aldrich, 99.9%) (or zirconium isopropoxide for the synthesis of ZrO₂nanoparticles) was firstly dissolved into30 mL methacrylic acid (MAA, Sigma Aldrich, 99%) and was stirred at 65 °C for 5-10 minutes to obtain a clear solution. A solution composed of 9 mL methacrylic acid and 1 mL water was added dropwise into the precursor solution. The mixture was then aged at 65 °C for 18 hours. The white precipitate was centrifuged and collected after washing with water and acetone multiple times. The final product HfO₂/MAA (denoted as HfMAA) was obtained after overnight drying in the vacuum oven at 60°C and stored for further use. HfO₂/trans-2,3-dimethylacrylate (denoted as HftDMA), HfO₂/2-methylbutric acid (denoted as Hf2MBA), HfO₂/isobutyric acid (denoted as HftBA) were synthesized with the same procedure with the corresponding acids replacing methacrylic acid. ZrO₂ based nanoparticles were synthesized using a similar procedure.

Solubility Tests

25 mg of the appropriate nanoparticle system and a fixed amount of photoacid generator (PAG) Nhydroxynaphthalimidetriflate(1 and 5 wt%, respectively) were dissolved into propylene glycol monomethyl ether acetate (PGMEA, Sigma-Aldrich, 99.5%) with a total mass up to 250 mg. The solution was filtered with a 0.2 μ m syringe filter to remove large particles and was then spin-coated on pre-cleaned silicon wafers (WRS materials) at 2000 rpm for 60 seconds. The thickness of the deposited photoresist film was about 100 nm. The film was heated at 110 °C for 60s to remove excess solvent and then exposed to 254 nm wavelength deep UV light with a dosage of 150 mJ/cm² through a quartz mask. An ABM mask aligner was used for photopatterning. The silicon wafers before and after exposure were cut into 5 mm×5 mm pieces and were immersed into 5 mL of different solvents for solubility testing.

Materials Characterization

Infrared spectra were collected by attenuated total reflectance with a Nicolet iZ10 ATR-FTIR spectrometer. 64 scans with 4 cm⁻¹ resolution were used for analysis. Thermogravimetric analysis and differential thermal analysis (TG/DTA) were performed with a Seiko Instruments TD/DTA 6200. The thermal analysis was conducted under N₂ atmosphere with a heating rate of 10 °C/min from room temperature to 580°C. Particle size and particle size distribution were obtained with the Malvern Zetasizer. Scanning electron microscopy images were collected on Zeiss LEO 1550 FE-SEM with an accelerating voltage of 1 kV.

Table S1. Weight percentage of different hybrid nanoparticles after heating from room temperature to 580 °C with a heating rate of 10°C/min.

Materials	HfO ₂				ZrO ₂			
	MAA	tDMA	2MBA	IBA	MAA	tDMA	2MBA	IBA
Weight (%)	59	64	51	64	62	54	47	49

Table S2. The Hansen solubility parameters and dielectric constant (ϵ) of solvents used for the solubility test and the corresponding parameters for the hybrid nanoparticles.

Solvent	δ_d (MPa ^{1/2})	δ_p (MPa ^{1/2})	δ_h (MPa ^{1/2})	3						
Water	15.6	16	42.3	80.1						
Methanol	15.1	12.3	22.3	32.4						
Acetonitrile	15.3	18	6.1	37.5						
Isopropyl alcohol	15.8	6.1	16.4	19.92						
Dimethylformamide	17.4	13.7	11.3	37.1						
Acetone	15.5	10.4	7	20.7						
Methyl ethyl ketone	16	9	5.1	18.5						
Ethyl acetate	15.8	5.3	7.2	6.02						
4-methyl-2-pentanol	15.4	3.3	12.3	10.4						
PGMEA	16.1	6.1	6.6	8.3						
Methyl isobutyl	15.3	6.1	4.1	13.11						
ketone										
n-butyl acetate	15.8	3.7	6.3	5.01						
Methylenechloride	18.2	6.3	6.1	9.1						
Chloroform	17.8	3.1	5.7	4.8						
Chlorobenzene	19	4.3	2	5.62						
Toluene	18	1.4	2	2.24						
Decalin	18.4	0	0	2.2						
Hybrid Nanoparticles										
ZrMAA	16.6	8.6	12.2	-						
HftDMA	16.7	8.5	11.1	-						
ZrtDMA	16.7	8.5	11.1	-						
HfIBA	18.4	8.5	4.6	-						
ZrIBA	20.0	7.7	10.3	-						
Hf2MBA	21.1	7.6	9.2	-						
Zr2MBA	21.1	7.6	9.2	-						

Figure S1.SEM images of photo-patterns by 254 nm deep UV lithography from (a) ZrMMA and (b) HfMMA with addition of 1 wt% PAG in 4-methyl-2-pentanol developer.

Reference

[1] L. Li, S. Chakrabarty, K. Spyrou, C. K. Ober, E. P. Giannelis, Chem. Mater. 2015, 27, 5027.