Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting information

Cobalt sulfide/N, S Co-doped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions

Binling Chen,^a Rong Li,^b Guiping Ma,^{a,c} Xinglong Gou,^b Yanqiu Zhu,^a and Yongde Xia*^a

^aCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom

^bChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P R China

^cState Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P R China

Figure. S1 (a) TEM image, (b) powder XRD pattern and (c) nitrogen sorption isotherms of the parental ZIF-67 material.

Figure. S2 SEM images of the as-synthesized nanocomposites where (a) $Co_x S_y @C-600$; (b) $Co_x S_y @C-800$ and (c) $Co_x S_y @C-1000$.

Figure. S3 STEM image and linear EDX for sample $\text{Co}_x\text{S}_y@\text{C-1000}$. C, N, S and Co signals are clearly detected from the sample. The compositional line profile shows that while C signal is observed on the outer surface of cobalt sulfide particles, S and Co signals are detected only in the inner core of the nanoparticles. The results indicate that the nanoparticle consists of a cobalt sulfide core, surrounded by a 5 nm thickness of carbon shell.

Figure. S4 SEM image and elemental mappings for sample $Co_x S_y @C-1000$.

Figure. S5 XPS results of (a) C 1s, and (b) O 1s for the as-synthesized nanocomposites.

Figure. S6 TGA (a) and their corresponding MS curves of CO_2 (b), H_2O (c), NO_2 (d), and SO_2 (e) for different nanocomposites.

Figure. S7 CV curves of (a) $Co_xS_y@C-600$, and (b) $Co_xS_y@C-800$ nanocomposites in N₂-saturated and O₂-saturated 0.1M KOH solution.

The kinetics parameters can be analyzed with the K-L equations as following:^{1,2}

$$\frac{1}{J} = \frac{1}{J_{\rm K}} + \frac{1}{B\omega^{1/2}}$$
$$B = 0.62nFC_0 D_0^{2/3} v^{-1/6}$$

Where *J* is the measured current density, $J_{\rm K}$ is the kinetic current density, ω is the angular velocity of the rotating electrode, *B* is the Levich constant, *n* is the overall number of electron transferred in the ORR process, *F* is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of O₂ (1.2×10⁻⁶ mol cm⁻³), D_0 is the diffusion coefficient of O₂ (1.9×10⁻⁵ cm² s⁻¹) and *v* is the kinematic viscosity (0.01 cm² s⁻¹) of the electrolyte.

The electron transfer number and the peroxide percentage can be calculated by the equations as following:^{1,2}

$$H_2O_2(\%) = 200 \times \frac{I_r/N}{I_d + I_r/N}$$
$$n = 4 \times \frac{I_d}{I_d + I_r/N}$$

Where I_d is disk current, I_r is ring current and N is the current collection efficiency (0.37) of the Pt ring.

References

(1) Li, Q.; Zhang, S.; Dai, L.; Li, L.-s. J. Am. Chem. Soc. 2012, 134, 18932.

(2) Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. J. Electroanal. Chem.

2001, *495*, 134.

Figure. S8 ORR polarization curves (a) and (c) of $Co_xS_y@C-600$, $Co_xS_y@C-800$, at different rotating speeds, respectively. K-L plots (b) and (d) of $Co_xS_y@C-600$ and $Co_xS_y@C-800$ at different potentials.

Figure. S9 (a) Disk current and ring current from RRDE measurements of $Co_xS_y@C-800$ with various loadings in O₂-saturated 0.1M KOH at a rotating speed of 1600rpm. (b) Percentage of 2e reduction and electron transfer number n in ORR at different potentials calculated from RRDE curves in (a). (c) Disk current and ring current from RRDE measurements of $Co_xS_y@C-1000$ with various loadings in O₂-saturated 0.1M KOH at a rotating speed of 1600rpm. (d) Percentage of 2e reduction and electron transfer number n in ORR at different potentials calculated from RRDE curves in (a).

	Specific	Microporous	External	Pore	Micropore
	surface area	surface area	surface area	volume	volume
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
$Co_xS_y@C-600$	178	19	159	0.80	0.008
Co _x S _y @C-800	238	92	146	0.35	0.038
Co _x S _y @C-1000	248	39	209	0.31	0.019

Table S2 Comparison of the ORR catalytic performance between our materials and differentprevious catalysts in 0.1 M KOH (Electrode rotating speed is 1600 rpm).

References	Catalyst	Onset	Current density	Number of
		potential	$(mA cm^{-2} at 0.45)$	electron
		(V vs.	V vs. RHE)	transfer
		RHE)*		
This work	Co _x S _y @C-1000	0.92	-4.50	3.69-3.78
Angew. Chem. Int. Ed. 2011,	Co _{1-x} S/RGO	0.87	-5.4	4-4.1
50, 10969				
Chem. Eur. J. 2013, 19, 5183	Co ₃ S ₄ /graphene	0.91	-3.2	3.2-3.9
ACS Appl. Mater. Interfaces,	Co _{0.5} Fe _{0.5} S@N-	0.91	-5.6	3.8-4.0
2015, 7, 1207	МС			
ACS Appl. Mater. Interfaces	NiCo ₂ S ₄ @N/S-	0.85	-4.1	3.6-3.8
2013, 5, 5002	rGO			
J. Mater. Chem. A	CoS ₂	0.80	-3.4	average 3.8
2013, 1, 5741				
Adv. Funct. Mater. 2015, 25,	N/Co-doped	0.97	-7.9	3.90-3.94
872	PCP//NRGO			

* Potentials measured versus Ag/AgCl electrode were converted to a reversible hydrogen electrode (RHE) scale on the basis of Nernst equation as follows:

$$E_{RHE} = E_{Ag/AgCl} + 0.059(pH) + 0.197(V)$$

 Table S3 Comparison of the OER catalytic performances between our materials and different previous catalysts.

References	Catalyst	Potential (V vs. RHE)	Electrolyte
		acquired for the current	
		density of 10 m A cm^{-2}	
		density of 10 mA cm	
This work	Co _x S _y @C-800	1.86	0.1 M KOH
This work	Co _x S _y @C-1000	1.70	0.1 M KOH
ACS Appl. Mater.	Co _{0.5} Fe _{0.5} S@N-	1.64	1 M KOH
Interfaces, 2015, 7, 1207	MC		
ACS Appl. Mater.	NiCo ₂ S ₄ @N/S-	1.69	0.1 M KOH
Interfaces 2013, 5, 5002	rGO		
Adv. Funct. Mater. 2015,	N/Co-doped	1.66	0.1 M KOH
25, 872	PCP//NRGO		
Small, 2014, 10, 2251	NGSH	1.63	0.1 M KOH
J. Am. Chem. Soc.,	CaMn ₄ O _x	1.77	0.1 M KOH
2010, <i>132</i> , 13612			
J. Phys. Chem.	r-IrO ₂	~1.73 or 1.68	0.1 M KOH or
Lett., 2012, 3, 399			0.1 M HClO ₄