Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Table of contents entry

 RuO_2/MnO_2 catalyzed Li– O_2 batteries show excellent high-rate performance due to nano- RuO_2

enabled fast wetting of Li₂O₂ on MnO₂ nanosheets.

Supporting Information

Nanostructured porous RuO₂/MnO₂ as highly efficient catalyst for high-rate Li–O₂ batteries

Guoqing Wang,^a Liliang Huang,^a Wei Huang,^a Jian Xie,^{ab*} Gaohui Du,^c Shichao Zhang,^d Peiyi Zhu,^e

Gaoshao Cao^b and Xinbing Zhao^{ab}

- ^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ^bKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
- °Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- ^dSchool of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

eIndustrial Technology Research Institute of Zhejiang University, Hangzhou 310058, China

^{*}E-mail: xiejian1977@zju.edu.cn

Fig. S1 (a,b) SEM images of MnO_2 on graphene-coated Ni foam, and (c) SEM and (d) TEM images of RuO_2/MnO_2 on graphene-coated Ni foam.

Fig. S2 (a) XPS survey of RuO_2/MnO_2 on graphene-coated Ni foam at the pristine state, (b) Mn 2p and (c) Ru 3d XPS at the pristine states, and (d) XRD patterns of δ -MnO₂.

Fig. S3 (a) SAED patterns of the RuO_2/MnO_2 electrode (a) after discharge to 1000 mAh g⁻¹ at 3200 mA g⁻¹ and (b) in the pristine state, and (c) Li 1s XPS of the charged and discharged electrodes.

Fig. S4 SEM images of (a) MnO_2 and (b) RuO_2/MnO_2 electrodes discharged to 1000 mAh g⁻¹ at

3200 mA g^{-1} with LiI.

Fig. S5 SEM images of MnO_2 and RuO_2/MnO_2 electrodes after discharge and recharge to 1000 mAh g⁻¹ at 3200 mA g⁻¹ with and without LiI.

Fig. S6 Voltage profiles of the Li–O₂ batteries with bare graphene catalyst.

Fig. S7 (a) Voltage profiles of the Li– O_2 batteries with Ru O_2/G electrode at 200 mA g⁻¹, and SEM image of the (b) pristine and (c) discharged Ru O_2/G electrode.

Fig. S8 Voltage profiles of (a) Li–MnO₂/G and (b) Li–RuO₂/G batteries tested in pure Ar.