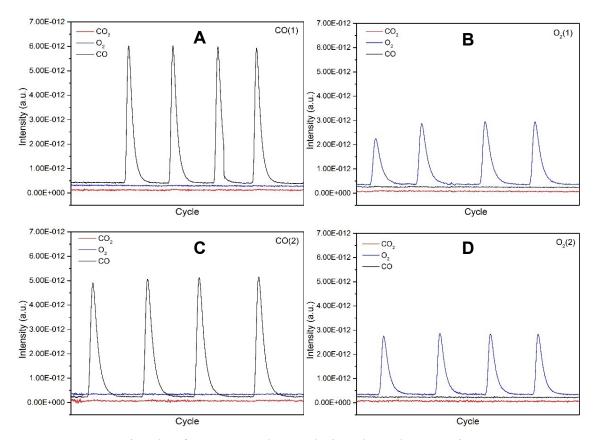
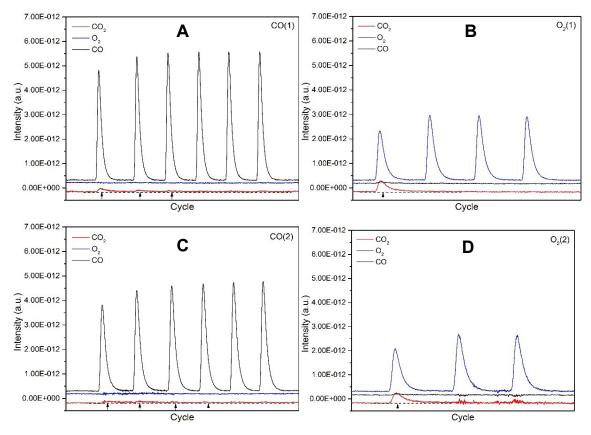
Supporting Information

Mild activation of CeO₂-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation


Weili Li^{1,4}, Qingjie Ge^{1,*}, Xiangang Ma¹, Yuxiang Chen,² Manzhou Zhu³, Hengyong Xu¹, Rongchao Jin^{2,*}

¹ Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China


² Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States

³ Department of Chemistry, Anhui University, Hefei 230026, China

⁴ University of Chinese Academy of Sciences, Beijing 100049, China

Figure S1. MS signals of CO, O_2 and CO₂ during the pulse experiments at <u>room temperature</u> over the activated Au₁₄₄(SR)₆₀/CeO₂ catalysts, (A) CO was pulsed into the reactor but no CO₂ was detected, (B) A sequence of O₂ (O₂(1)) were pulsed into the reactor after CO(1), no CO₂ signal was observed, (C) The second sequence of CO pulses, (D) The subsequent sequence of O₂ pulses. (Black: CO, blue: O₂, red: CO₂).

Figure S2. MS signals of CO, O_2 and CO_2 during the pulse experiments <u>at 80 °C</u> over the activated Au₁₄₄(SR)₆₀/CeO₂ catalysts. (A) CO was pulsed into the reactor, with CO₂ detected, (B) A sequence of O_2 ($O_2(1)$) were pulsed into the reactor after CO(1), with CO₂ observed, (C) The second sequence of CO pulses, (D) The subsequent sequence of O_2 pulses. (Black: CO, blue: O_2 , red: CO₂).