Electronic Supplementary Information for

Crystal Phase-Controlled Synthesis of Rod-Shaped

AgInTe₂ Nanocrystals for *in vivo* Imaging in the Near-Infrared

Wavelength Region

Tatsuya Kameyama,^a Yujiro Ishigami,^a Hiroshi Yukawa,^{a,b} Taisuke Shimada,^a

Yoshinobu Baba,^{a,b,c,d} Tetsuya Ishikawa,^e Susumu Kuwabata,^f and Tsukasa Torimoto^{a*}

^aGraduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

^bImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^cInstitute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^dHealth Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan

^eDepartment of Medical Laboratory Sciences, Graduate School of Medicine, Nagoya University,

Daikominami, Higashi-ku, Nagoya 461-8673, Japan

^fGraduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Correspondence to: torimoto@apchem.nagoya-u.ac.jp

Experimental Section

1. Characterization of AgInTe₂ nanocrystals (NCs)

1.1 Materials

Indium(III) acetate, tellurium, and indocyanine green were purchased from Sigma Aldrich. Zinc(II) acetate, 1-dodecanethiol (DDT), trioctylphosphine (TOP), and octane were obtained from Wako Chemicals. Other chemicals were supplied by Kishida Reagents Chemicals.

1.2 Characterizations of AgInTe₂ NCs

The chemical compositions of the AgInTe₂ NCs were determined by energy-dispersive X-ray analysis (Horiba, EMAX Energy EX-250) or X-ray fluorescence spectroscopy (Rigaku, EDXL-300). The sizes and shapes of the NCs were observed by transmission electron microscopy (TEM; Hitachi H-7650) at an operating voltage of 100 kV. The size distributions were obtained by measuring the dimensions of particles observed in the TEM images (more than 100 particles). The crystal structures were determined by powder X-ray diffraction (XRD) analysis using a Rigaku Smart-Lab with CuK α radiation. UV-visible-near-infrared absorption spectra were obtained with a JASCO V-670 spectrophotometer, and PL spectra were acquired with a Horiba Nanolog fluorescence spectrophotometer. Photoluminescence quantum yield (QY) was determined using indocyanine green as a standard reference (QY = 13.2% in ethanol)¹ for near-infrared photoluminescence with excitation at 700 nm. The relative PL QY of AgInTe₂ was calculated by using the following equation,

$$QY = QY_R \frac{I A_R n^2}{I_R A n_R^2}$$

where QY is the quantum yield of samples, I is the measured integrated PL intensity, n is the refractive index of solvent, and A is the absorbance at the excitation wavelength (typically 0.1). The subscript R refers to the parameters of the standard reference.

1.3 Crystal structure simulation of hexagonal AgInTe₂

The authentic diffraction pattern for the hexagonal wurtzite crystal phase of AgInTe₂ was not available in the International Center for Diffraction Data (PDF-2) or any literature. Therefore, we simulated the XRD pattern of hexagonal AgInTe₂ according to the method previously reported for the simulation of the XRD pattern of wurtzite CuInS₂.² The crystal structure analysis software Rietan-FP was used for the calculation.³ The lattice constant was estimated by substituting the d-spacing values of the AgInTe₂ NCs determined by XRD measurement for those of the wurtzite crystal structure of ZnS; the *hkl* values of the diffraction peaks in the XRD patterns of the AgInTe₂ NCs were obtained by analogy with the patterns of wurtzite ZnS. The detailed information regarding crystal structure data are shown in Tables S1 and S2.

Formula	Crystal system		Lattice constant / Å	
		Space group	a and b	С
AgInTe ₂	Hexagonal	P6 ₃ mc (No.186)	4.521	7.449

Table S1 Crystal data of AgInTe₂ used for XRD pattern simulation

Table S2 Atomic coordinates	of hexagonal AgInTe $_2$	used for XRD pattern	simulation

Atom	x/a	y/b	z/c	Occupancy
Te	1/3	2/3	0	1
In	1/3	2/3	0.3752	0.5
Ag	1/3	2/3	0.3752	0.5

2. Incorporation of AgInTe₂ NCs into liposomes

2.1 Preparation of liposome-AgInTe₂ composites

To demonstrate the performance of AgInTe₂ as near-infrared light emitting materials for *in vivo* imaging, it is necessary to disperse the hydrophobic AgInTe₂ NCs in a hydrophilic media. Thus, the asprepared AgInTe₂ NCs were encapsulated into small unilamellar liposomes according to a previously reported method for the preparation of liposome-CdSe NC nanocomposites.⁴ Furthermore, chloroform solution containing 8.26 nmol(particles) AgInTe₂ NCs prepared at 180°C was placed into a test tube. The amount of AgInTe₂ NCs was determined from the absorption coefficient of AgInTe₂ NCs at 700 nm (1.42 \times 10⁶ dm³ mol⁻¹(particles) cm⁻¹; Fig. S5). A 770-mm³ portion of chloroform solution containing 8.86 µmol 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) was added to the test tube and vigorously stirred until the solution became clear. Chloroform was then evaporated under reduced pressure to obtain a DSPC-AgInTe₂ composite film. The obtained film was hydrated by the addition of 3 cm³ culture media [Dulbecco's modified Eagle's medium (DMEM)/F12 [11320, Gibco[®], Thermo Fisher Scientific, USA] containing 20% fetal bovine serum (FBS: Trace Scientific Ltd., Australia) and 100 U/cm³ penicillin/streptomycin]. Since the resulting dispersion contained multilamellar liposomes, the ultrasonication of the solution was conducted for 1 min at 65°C followed by centrifugation at 4000 rpm for 1 min to remove large liposomes from the dispersion. The resulting dispersion contained predominantly unilamellar liposomes composed of DSPC-AgInTe₂ composites. The average hydrodynamic diameter was determined to be 1.8×10^2 nm by dynamic light scattering (DLS; Otsuka Electronics FDLS-3000H).

3. In vivo photoluminescence imaging of mice injected with AgInTe₂ NCs

C57BL/6 mice were purchased from SLC Japan. The mice were housed in a controlled environment (12 h light/dark cycles at 21°C) with free access to water and an alfalfa-free diet before sacrifice. All

conditions and handing of animals in this study were conducted under protocols approved by the Nagoya University Committee on Animal Use and Care. For *in vivo* PL imaging studies, we used the mice given food containing no fluorescent components for one week to diminish the effect of autogenic fluorescence from mice. The dispersions of DSPC-AgInTe₂ composite liposomes were prepared by the dilution of original dispersion with phosphate-buffered saline (pH 7.4). After the injection of 50 mm³ dispersion of DSPC-AgInTe₂ composite liposomes, the mice were anesthetized and then monitored with an SAI-1000 portable *in vivo* fluorescent imaging system (SHIMADZU; excitation filter, 980 nm; emission filter, 900 nm long-pass).

Results

Fig. S1 The fractions of Ag (*i*), In (*ii*), and Te (*iii*) in AgInTe₂ NCs prepared at different reaction temperatures. The lines show the stoichiometric fractions of Ag and In (dotted lines) and that of Te (broken line).

Fig. S2 TEM images of AgInTe₂ NCs prepared at (a) 220°C and (b) 280°C.

Fig. S3 Tauc plots used to determine the E_g of AgInTe₂ NCs. The absorption spectra of nanocrystals prepared at (a) 180°C, (b) 220°C, (c) 250°C, (d) 280°C, and (e) 300°C were used for these plots.

Fig. S4 Size distribution of liposomes composed of DSPC-AgInTe₂ composites measured by DLS.

Fig. S5 Molar absorption coefficient (ϵ) of AgInTe₂ NCs at different photon energies. The nanocrystals were prepared at 180°C.

Fig. S6 Changes in PL intensities of DSPC-AgInTe₂ NCs composites dissolved in 10 mmol dm⁻³ phosphate buffer solutions during storage under various conditions. Each PL intensity was normalized by the corresponding initial value. The solutions at pH 7.0 were stored in the dark under atmospheres of N₂ (*i*) or air (*ii*), and were continuously irradiated in air by the excitation light with wavelength of 700 nm (the intensity of 17.5 mW cm⁻²) (*iii*), which were used for the excitation in PL measurements. The durability tests of photoluminescent AgInTe₂ NCs in the solutions at pH 5.4 (*iv*) and 8.5 (*v*) was also carried out in air under the dark.

Fig. S7 (a,b) *In vivo* photoluminescence images of mice at (a) 1 h and (b) 5 h after injection of the DSPC-AgInTe₂ composite dispersion. A 50 mm³ portion of DSPC-AgInTe₂ dispersion was injected into each site of $i \sim v$ on the mouse, as shown in the panels a and b. The NC concentrations of the injected solutions were (*i*) 50, (*ii*) 25, (*iii*) 12.5, (*iv*) 6.25, and (*v*) 0 nmol(particles) dm⁻³. (c) The time course of PL intensity after the injection of the DSPC-AgInTe₂ dispersion containing 50 nmol(particles) dm⁻³ AgInTe₂ NCs.

References

- 1. K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232-1242.
- D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang and Y. F. Lu, J. Am. Chem. Soc., 2008, 130, 5620-5621.
- 3. F. Izumi and K. Momma, Sol. Stat. Phen., 2007, 130, 15-20.
- W. W. Zheng, Y. Liu, A. West, E. E. Schuler, K. Yehl, R. B. Dyer, J. T. Kindt and K. J. Salaita, J. Am. Chem. Soc., 2014, 136, 1992-1999.