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Materials and Methods:

Ethanol alcohol HPLC with spectroscopic grade purity was supplied by TEDIA, tetra-

ethyl-ortho-silicate (TEOS) was supplied by Sigma-Aldrich, and the ammonia P.A. was 

supplied by VETEC. The titanium dioxide (TiO2, nanoparticles of 410 nm) with a rutile 

crystal structure was acquired from DuPont Inc. (R900). TiO2 nanoparticles were coated 

with a silica shell of ~40 nm thickness via the Stöber method. In the first stage, 5 g of 

TiO2 Nps were dispersed in 500 ml of absolute ethanol. This suspension was placed in 

an ultrasound bath for 20 minutes to disperse the particles and 6.67 mL of ammonia and 

10 mL of TEOS were added. The TEOS and commercial ammonia (NH4OH 28%-30%) 

were added alternately in 100 portions of 100 μl and 220 μl, respectively. The 

synthesized TiO2@Silica nanoparticle suspension was rota-evaporated, dried in an oven 

at 70 °C for 2 h, and re-dispersed in ethanol. 

Characterization sample: 

Transmission electron microscopy (TEM) and electron-energy-loss spectroscopy 

(EELS) were performed on a Carl Zeiss Libra 120 kV transmission electron microscope. 

The commercial carbon-coated Cu TEM grid was immersed in the solution of 

TiO2@Silica nanoparticles that had previously been diluted 1000-fold and then left to 
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dry, before being introduced into the microscope. Figure S1 shows two additional 

images of the core-shell TiO2@Silica Nps. It is evident that the silica coating shows 

great homogeneity, more so than the sample we presented in our previous work.1, 2 

Additionally, the presence of silica Nps with a size of ~40 nm are observable.  

Figure S1. TEM images of core-shell TiO2@Silica Nps demonstrate the homogeneity 
of silica shell coating onto the TiO2 nanoparticle.

For ED-XRF characterization, 200 mg of dried sample powder (TiO2@Silica) was 

pressed into a tablet form with a 12 mm diameter. The mass percentage ratio (Ti/Si) of 

the dried sample powder (TiO2@Silica Nps) determined by ED-XRF, was Ti72/Si28, 

which represents an average silica shell thickness of ~42 nm. 

Transport experiments

Coherent-ballistic transport
For suspensions of five different concentrations (280, 140, 70, 47, and 14; x1010 Np ml-

1) of TiO2@Silica Nps in ethanol, the transmitted coherent intensity ITC has been 

measured as a function of slab thickness. For Np≥47x1010 Np ml-1, ITC decay more 

quickly than an exponential (part I). The scattering mean free paths for d near to zero 

(ls0) were determined from the first experimental point (part I) of the coherent 

transmission curves. 3 For 280x1010 Np ml-1, ls0 value cannot be determined because 

1 E. Jimenez-Villar, Valdeci Mestre, Paulo C. de Oliveira, Gilberto F. de Sá, Nanoscale, 2013, 5, 12512-
12517.
2 E. Jimenez-Villar, Valdeci Mestre, Paulo C. de Oliveira, Wagner M. Faustino, D. S. Silva, Gilberto F. 
de Sá, Appl. Phys, Lett. 2013. 104. 081909.



the intensity in part I decayed extremely quickly, which prevented a reliable 

measurement.  Figure S2a shows a schematic diagram of the experimental setup for this 

transport experiment. The laser beam (second harmonic of Q-switched Nd:Yag 

Continuum Minilite II, λ = 532 nm, 1 μJ (1mJ attenuated 103 times by neutral density 

filters), with a pulse width of ~4 ns, and a repetition rate of 10 Hz) was passed through a 

positive lens L1 (200 mm focal length), in order to obtain the focus with its waist near 

the pinhole PH1 (600μm diameter). The cell consisted of two optical flats (fussed silica, 

3.2mm thickness), F, in wedge form; the slab thickness depends on the incidence point 

of the cell. The laser spot size on the cell is 0.5 mm. Another pinhole, PH2 (1200μm 

diameter), was positioned 80 mm away from PH1, in order to reduce the diffuse light. 

Yet another lens, L2 (50 mm focal length), allowed for focalization on the optical fiber 

(200μm). The multimode optical fiber (200 μm) was coupled to a spectrometer HR4000 

UV-VIS (Ocean Optics) with a 0.36 nm spectral resolution (FWHM). In order to 

average out laser intensity fluctuations, the transmitted intensity was acquired by 

integration during 10s (100 laser shots). For this transport experiment, the laser fluence 

(Nd:Yag, 532 nm) on the samples was constant (1J). Several optical neutral filters 

were introduced in front of the optical fiber, providing a broad dynamic range of 

detection. In order to reduce the stray light, the fused silica plates (50 mm diameter) that 

form the wedge cuvette, were glued with opaque silicone glue. The stray light has been 

measured for all samples at large slab thickness (1-2 order lower than signal), and it 

was subtracted to ITC signal for each Nps.

3 Martin B. van der Mark, Meint P. van Albada, Ad Lagendijk, Physical Review B 1988, 37 (7), 3575-
3592.



Figure S2.  Schematic diagrams of the experimental setup for determination of: a) 
transmitted coherent intensity as a function of slab thickness. L1 and L2, lens; F+F, cell 
consisting in two optical flat mounted on a translation stage; PH1 and PH2, pinholes; 
OF, optical fiber to collect the light in the spectrometer; b) transmission coefficient, IS, 
integrating sphere is placed in contact with the back-cell; CW He-Ne (633 nm, 5mW) 
and pulsed Nd:Yag (532nm, 1J) lasers; MO (microscope objective) allows for a spot 
size <0.5 mm on the cell; MC, microscope coverslip (BK7, 100m thickness); c-g) 
Parts III of the coherent transmission curves (measured for 532nm) for [Nps] of: c) 14, 
d) 47, e) 70, f) 140 and g) 280; x1010 Np ml-1. The green lines represent the fitting with 
an exponential function. h) Inverse of the macroscopic “absorption” length (lMA)-1 as a 
function of the filling fraction. The red dotted line represents the expected behavior in 
the diffusive regime . The black solid line represents the fit with the function (𝐶1[𝐹𝐹])

.𝐶([𝐹𝐹] ‒ [𝐹𝐹𝑐])2 + 𝐶1[𝐹𝐹]

Figure S2 c-g show the parts III of the coherent transmission curve for 14, 47, 70, 140 

and 280; x1010 Np ml-1, respectively, whose decay are exponential . From its (𝑒
‒

𝑑
𝑙𝑀𝐴)



inverse slopes, we obtain the macroscopic “absorption” length (lMA). Figure S2h shows 

the inverse of the macroscopic “absorption” length (lMA)-1 as a function of filling 

fraction. As can be observed, (lMA)-1
 increases more quickly than the expected linear 

increase (red dotted line), which represents an anomalous behavior. The experimental 

points have been fitted (black solid line) with the following function: 

, where C, C1 are constants and [FFc] can be (𝑙𝑀𝐴) ‒ 1 = 𝐶([𝐹𝐹] + [𝐹𝐹𝑐])2 + 𝐶1[𝐹𝐹]

interpreted as the critical filling fraction for which starts the lMA anomalous behavior. 

The linear part (C1[FF]) corresponds with the expected linear increase at the diffusive 

regime. The quadratic term would represent the enhanced “absorption” contribution by 

localization effect. 

FF % 1.06 3.5 5.3 10.6 21.2
Nps x1010 Np ml-1 14 47 70 140 280
lMA values (m) 817 230 144 59 19.3
ls0 values (m) 11.5 3.4 2.3 1.1 0.55”
LT0 values (m) 13.2 3.9 2.7 1.3 0.65”
lIn0 values (mm) 50.5 13.6 8 2.7 0.58”
0 1 1.12 1.27 1.84 4.4”
neff (calculated) 1.37 1.41 1.43 1.53 1.65
lT (BC) (m) 0.93 0.7 0.64 0.47
neff0 (enhanced) 1.37 >1.46 >1.55 >1.98 >3.86”
lT* (BC)  (m) <0.86 <0.6 <0.49 <0.24”
Table S I. lMA, ls0, lT0, lIn0 and 0 values experimentally determinate for each FF or 
Nps. Classical neff (calculated) and enhanced neff0 (estimated by 

 are the effective refractive indexes for each FF or Nps. (𝑛𝑒𝑓𝑓0 = 1 + 𝛾0(𝑛𝑒𝑓𝑓 ‒ 1))
lT* (BC) and lT (BC) are the lT values extracted from the coherent backscattering cone, 
with and without the correction of effective refractive index, respectively. The (“) 
symbol represents those values estimated by extrapolation.

From lMA values, we obtain , where lIn and lT are the inelastic and 𝑙𝑀𝐴 = (𝑙𝑇 × 𝑙𝐼𝑛)
1

2

transport mean free path, respectively. lT can be found through , where 𝑙𝑇 =
𝑙𝑆

(1 ‒ 〈cos 𝜃〉)

 is the average cosine of the scattering angle. The average size of TiO2 scatter 〈cos 𝜃〉

cores (TiO2@Silica) is 0.41 µm. According to our previous work,2 the increase of 

scattering strength by LCE effects in the TiO2@Silica system is manifested through an 



effective increase of the filling fraction, and not by the increase of the scattering cross 

section. Therefore, assuming scattering cores with a size of 0.41 µm, Mie theory yields 

a value of 0.13 for , hence, . Table SI shows lIn values for d near to 〈cos 𝜃〉 𝑙𝑇 ≈ 1.15 × 𝑙𝑆

zero (lIn0) for each Nps or FF.  The “absorption” (lIn0
-1) per filling fraction (FF0) 

must be constant, however, it shows a quadratic increase with Nps or FF  (fig. 2d). 

This fact must be a consequence of localization phenomenon. 

Measurement of transmission coefficient

In order to study the transmitted total intensity, the transmission coefficient was 

measured as a function of slab thickness.  The transmission coefficient is defined as the 

ratio between the total transmitted flux and the incident flux. The transmitted total 

intensity is measured with an integrating sphere placed in contact with the back of the 

cell. Figure S2b shows the schematic diagram of this experimental setup. The pulsed 

Nd:Yag (532nm) and CW He-Ne (633nm) laser beams were passed through a 

microscope objective (x20), in order to obtain a < 0.5 mm spot size on the cell. The total 

transmission is measured with an integrating sphere placed in contact with the back of 

the sample. The signal was collected through a multimode optical fiber (200 μm), 

coupled to a spectrometer HR4000 UV-VIS (Ocean Optics) with a 0.36 nm spectral 

resolution (FWHM).  A study of the transmission coefficients for Nps of 280, 140, 70, 

47 and 14; x1010 Np ml-1 were performed using both wavelengths (532nm and 633nm) 

and regimens (pulsed and CW) laser. The fluence of the Nd:Yag laser was 107 times 

higher than of He-Ne laser. The transmission coefficient shows a (d0+d)-2 behavior for 

Nps ≥47x1010 Np ml-1; however, for 14x1010 Np ml-1 a classical behavior (d0+d)-1 is 

observed. Notice that the scattering medium is contained in a fussed silica cell, 

therefore, the collected intensity must come from angles less than 42º (respect to 

perpendicular of cell surface), due to the total internal reflection (silica-air interface). 



For 280x1010 Np ml-1, this angle would be 36º because the effective refractive index 

 (output face). The total intensity (T(d)) that would be collected can be 𝑛𝑒𝑓𝑓 ≈ 1.64

expressed by the equation S1 and S2, which correspond to linear and quadratic decay, 

respectively.  is the collection angle respect to perpendicular of cell surface, 1 would 

be the maximum collection angle and f() is the angular dependence of total intensity. 

For an ideal case, 1 is 90º (almost all scattered power is collected), however, in our 

case, 1 is ~42º for Nps ≤140x1010 Np ml-1 and 36º for 280x1010 Np ml-1.

𝑇(𝑑) = 𝛽 ∗
1 (𝑑0 + 𝑑) ‒ 1[2

𝜗1

∫
0

𝑓(𝜗)𝑑𝜗] S1

𝑇(𝑑) = 𝛽 ∗ (𝑑0 + 𝑑) ‒ 2[2

𝜗1

∫
0

𝑓(𝜗)𝑑𝜗] S2

𝛽1 = [2

𝜗1

∫
0

𝑓(𝜗)𝑑𝜗]𝛽 ∗
1

S3

𝛽 = [2

𝜗1

∫
0

𝑓(𝜗)𝑑𝜗]𝛽 ∗
S4

From the equation S1 and S2, it can be determined the linear and quadratic decay that 

would have T(d) if it is integrated over all angle (0º-90º). If 1 and  are defined by S3 

and S4 equation, respectively, it implies that 1 and  values must be equal for both 

cases: ideal (0º-90º) and our collection (0º- 42º or 36º). Notice that, for ,𝑑 ≫ 𝑑0

 and  for linear and quadratic decay, respectively. However, 
 𝑇𝜗1

(𝑑) =
𝛽1

𝑑 𝑇𝜗1
(𝑑) = 𝛽

𝑑2

for ideal collections d0 must approximately satisfy the relationships S5 and S6 for linear 

and quadratic decay, respectively. Notice that, for , S1 and S2 equation can be 𝑑 ≪ 𝑑0

expressed as:  and , respectively. Additionally, for ideal case 
 𝑇𝜗1

(𝑑) =
𝛽1

𝑑0
𝑇𝜗1

(𝑑) = 𝛽
𝑑0

2



( ),  must approximately tend to unity. 𝜗1 = 90º 𝑇90º(0)

𝑑90º
0 = 𝑑42º

0 × 𝑇42º(0) ≈ 𝑑42º
0 × 42º

90º ≈ 𝑑42º
0 × 0.47 S5

𝑑90º
0 = 𝑑42º

0 × 𝑇42º(0) ≈ 𝑑42º
0 × 42º

90º ≈ 𝑑42º
0 × 0.69 S6

For 280x1010 Np ml-1, S6 equation would be; .
𝑑90º

0 ≈ 𝑑36º
0 × 36º

90º ≈ 𝑑36º
0 × 0.64

Therefore,  (linear decay) and (quadratic decay). For 𝑇42º(0) ≈ 0.47 𝑇42º(0) ≈ (0.69)2 ≈ 0.47

280x1010 Np ml-1,  . Notice that, the total transmission has been 𝑇42º(0) ≈ (0.64)2 ≈ 0.42

performed with two-laser sources: one pulsed (532nm) and other CW (633nm) with 

fluencies and wavelengths completely different, however, the quadratic decays are 

similar. Typically, a sample “absorption” dependency is expected with the wavelength, 

which would greatly modify the total transmission curves. Additionally, a dependency 

of the inelastic scattering processes with the fluence must also be expected. However, 

the total transmission curves for both lasers are similar. For 14x1010 Nps ml-1, 

transmission coefficient fits very well with a  decay. However, for Nps 𝛽1(𝑑0 + 𝑑) ‒ 1

≥47x1010 Nps ml-1, the experimental points fit very well with a function. For 𝛽(𝑑0 + 𝑑) ‒ 2

Nps ≤ 140x1010 Nps ml-1, the transmission coefficients tend to ~(0.47), which 

correspond with the expected transmission coefficient for d=0. However, for 280x1010 

Nps ml-1, the transmission coefficient tends to a value (~0.3) lower than the expected 

value (~0.42), which must be the result of an increase of the losses due to enhanced 

“absorption”.

In order to estimate the expected transmission curve for 280x1010 Nps ml-1 without 

“absorption” effect, the experimental points was fitted with  expression, 𝛽(𝑑0 + 𝑑) ‒ 2 × 𝐴

where A is a constant that would represent the intensity losses by “absorption”. A value 

was fixed such that , which is the expected value of transmission 
𝛽

(𝑑0)2 = 0.42



coefficient at d=0. The green dotted line in the figure S3a represents a possible 

quadratic decay  without intensity losses by “absorption” (280x1010 Nps ( 𝛽(𝑑0 + 𝑑) ‒ 2)

ml-1). Clearly, the above approach is not strictly correct; it is just a rough 

approximation in order to find a possible decay behavior without the “absorption” effect. 

At localization transition complex phenomena can arise, such that the inelastic mean 

free path could be sensitive to depth and propagation angle. Therefore, a theoretical 

approach including the interplay between localization and “absorption”, and 

“absorption” dependence with the propagation angle and depth it becomes necessary.

For Nps ≥47x1010 Nps ml-1, we have also tried to fit the transmission coefficient curve 

with an exponential decrease rather than a parabolic one, but without success. It fits 

very well with a  function. In any case function, because 𝛽(𝑑0 + 𝑑) ‒ 2 𝑇(𝑑) = 𝛽1(𝑑0 + 𝑑) ‒ 1 

it does not fit well and d0 would be negative, i.e. indeterminate in d0. 

On the other hand, the experimental points were also fitted with 

, =5/3 function, which is derived from diffusion 𝑇(𝑑) = (𝑙 ∗
𝑀𝐴 𝛾𝑙𝑇)sinh2 (𝛾𝑙𝑇 𝑙 ∗

𝑀𝐴) sinh (𝑑 𝑙 ∗
𝑀𝐴)

theory with absorption in the crossover region. 4 , where B 
𝑙 ∗
𝑀𝐴 ≈

𝑙𝑀𝐴
𝐵 = (𝑙𝑇 × 𝑙𝐼𝑛

𝐵)
1

2

is the freedom degrees, linked to the solid angle of collection. As only the scattered 

energy with angles <(±42º or 36º) is collected, the freedom degrees are reduced to ~(1.9 

or 1.8). The black dotted lines in the figure S3a show the fitting with the above 

expression. For 14x1010 Nps ml-1, this fit is insensitive to lMA* (lMA* ), which means 

that the experimental points must not be in the crossover region. Notice that, 

 term would be around 10-2, therefore, it would be negligible in the (𝑙 ∗
𝑀𝐴 𝛾𝑙𝑇)sinh2 (𝛾𝑙𝑇 𝑙 ∗

𝑀𝐴)

measurement range. The lT, lMA* and  values extracted through the last 𝑙𝑀𝐴 = 𝑙 ∗
𝑀𝐴 × 𝐵

fitting are displayed in the table SII. As can be observed, these values are much higher 

4 Scheffold, F., Lenke, R., Tweer, R. & Maret G. Localization or classical diffusion of light? Nature 398, 
206 (1999).



than those determined by the coherent backscattering cone or ballistic transport. 

Additionally, the lMA* and lMA values also show an anomalous behavior, it shows a 

 dependence. Therefore, the diffusion theory with (𝑙𝑀𝐴) ‒ 1 = 𝐶([𝐹𝐹] + [𝐹𝐹𝑐])2 + 𝐶1[𝐹𝐹]

absorption could not explain the anomalous decay of the total transmission for Nps 

≥47x1010 Nps ml-1. The green and red solid lines (fig. S3a) are fitting with experimental 

points by using the quadratic decay function (Nps ≥47x1010 Nps ml-1) and the linear 

decay function (14x1010 Nps ml-1) for Nd:Yag and He-Ne lasers, respectively. We 

must highlight that the  fitting parameter  also decreases quadratically in (𝛽(𝑑0 + 𝑑) ‒ 2)

Nps (fig. S3b), being more pronounced for 633nm (He-Ne) laser.  A 

 dependence was found, where C0, C1 are constants and Nc 𝛽 ‒ 1 = 𝐶0 + 𝐶1([𝑁𝑝𝑠] ‒ [𝑁𝑐])2

can be interpreted as the critical Nps which starts the  parabolic dependence. 

Figure S 3. a) Transmission coefficient for the lasers: pulsed Nd:Yag and CW He-Ne 
and [Nps] of: 14, 47, 70, 140 and 280; x1010 Nps ml-1. Open and filled symbols 
correspond to experimental points for Nd:Yag and He-Ne (lasers), respectively. Green 
and red solid lines represent the fitting with experimental points (  or 𝛽(𝑑0 + 𝑑) ‒ 2

) for Nd:Yag and He-Ne (lasers), respectively. The green dotted line 𝛽1(𝑑0 + 𝑑) ‒ 1

[280x1010 Nps ml-1] corresponds with a possible transmission curve without 
“absorption” contribution for Nd:Yag laser. The black dotted lines are derived from 
diffusion theory with absorption , ≈5/3. b) -1 𝑇(𝑑) = (𝑙 ∗

𝑀𝐴 𝛾𝑙𝑇)sinh2 (𝛾𝑙𝑇 𝑙 ∗
𝑀𝐴) sinh (𝑑 𝑙 ∗

𝑀𝐴)
evolution shows a quadratic increase as [Nps] is increased. Closed squares (red line) 
and open circles (green line) correspond to -1 evolution for He-Ne and Nd:Yag lasers, 



respectively. 

FF (%) 1.06 3.5 5.3 10.6 21.2
Nps  (x1010Np ml-1) 14 47 70 140 280
lT  (m) 12.3 5.4 4.5 2.2 0.8
lMA*  (m) Insensitive () 500 253 137 62
lMA  (m) - 689 349 189 83
Table S II. lT and lMA* values extracted through the fitting with the crossover function 

. The lMA values were calculated through 𝑇(𝑑) = (𝑙 ∗
𝑀𝐴 𝛾𝑙𝑇)sinh2 (𝛾𝑙𝑇 𝑙 ∗

𝑀𝐴) sinh (𝑑 𝑙 ∗
𝑀𝐴)

 expression. 𝑙𝑀𝐴 = 𝑙 ∗
𝑀𝐴 × 𝐵

Propagation experiment

Figure S 4.  Schematic diagrams of the experimental setup for determination of the 
intensity profile after propagating through samples, L1 and L2, lens; PH, pinhole; CV, 
fussed silica cuvette of ~1.8 mm optical pathlength; CCD camera; NDF, neutral density 
filter.

The intensity structure of a He-Ne beam was studied after propagating a distance of 

~1.8 mm through the samples. Figure S4 shows a schematic diagram of the 

experimental setup for this study. The probe beam (He-Ne laser), linearly polarized, was 

passed through a positive lens L1 (200 mm focal length), in order to obtain the focus 

with its waist near the pinhole PH (600μm diameter). Another lens, L2 (38 mm focal 

length), was positioned 250 mm away from PH, in order to focalize the beam on the cell, 

CV. The spot size on the input face of the sample is less than 100m. Neutral density 

filters were used to attenuate the beam intensity (He-Ne).  The cell consisted of two 

optical flats (fussed silica, 3.2 mm thickness), the optical pathlength was 1.8 mm. In 

order to reduce the stray light, a metallic film with an aperture of 5 mm diameter, 

through which the probe beam enters, is placed in the input interface silica-sample. A 



CCD camera collected the images of probe beam at output face. The probe beam was 

introduced with incidence angles of 0º, 30º, 45º and 60º regarding to normal incidence. 

The beam polarization is parallel to incident plane. The confinement of the beam at the 

output plane is quantified by the inverse participation ratio 

, which has units of 
𝑃 ≡ [∫𝐼(𝑥,𝑦)2𝑑𝑥𝑑𝑦] [∫𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦]2 =

1
𝜋[ + ∞

∫
‒ ∞

𝐼(𝑟)2𝑑𝑟] [ + ∞

∫
‒ ∞

𝐼(𝑟)𝑑𝑟]2

inverse area, and an effective width . The statistical standard deviation of 𝜔𝑒𝑓𝑓 = (𝑃)
‒ 1

2

P  is determined by evaluated in . Notice that, for (∆𝑃) (1
𝜋

2 (𝑑[𝑃(𝑟)]
𝑑𝑟 )2 × 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

𝑟 ≈ 0

a symmetric function regarding to r=0 (like the intensity profiles), P operation over I(r) 

yields a monotonic decreasing function with an inflection point at r=0. P variance is 

defined as the moment of second order, which can be determine through its derivative 

 in the inflection point (r=0) because the higher order derivative are zero (1
𝜋

2 (𝑑[𝑃(𝑟)]
𝑑𝑟 )2)

(symmetric function).

Measurement of transport mean free path by backscattering method

In order to determine scattering strength by another way, the coherent backscattering 

cones were measured for 47, 70, 140 and 280; x1010 Np ml-1]. Figure S5a shows the 

experimental setup to measure the backscattered light. The laser beam (He-Ne), linearly 

polarized, was passed through a positive lens L1 (200 mm focal length), in order to 

obtain the focus with its waist near the pinhole PH (600μm diameter). Another lens, L2 

(150 mm focal length), was positioned 150 mm away from PH (focal length), in order 

to collimate the beam on the cell, CV. The sample is illuminated through a beam splitter 

that reflects 50% of laser intensity. The light backscattered is collimated by a lens L3 

(25 mm focal length) and a CCD collects it. Neutral density filters were used to 

attenuate the beam intensity (He-Ne).  The cell is composed of two fused silica optical 



flats (6 mm thickness). In order to average out the speckle pattern, the collection time 

was 500 seconds, which is enough for particle diffusion in the suspension. The sample 

was slightly tilted (horizontal) to keep the specular reflection from reaching the 

detector.

Figure S 5. a) Experimental setup for determine the coherent backscattering cone, L1, L2 
and L3, lens; PH, pinhole; BS, beam splitter; CV, cuvette of 2 mm optical pathlength; 
CCD camera; BD, beam dump. b,c,d,e) coherent backscattering cones for Nps] of: b) 
47x1010 Np ml-1, c) 70x1010 Np ml-1, d) 140x1010 Np ml-1and e) 280x1010 Np ml-1. klT* 
and klT were determined with and without the refractive index correction, respectively. 
The enhanced effective refractive indexes at d near to zero are also displayed inside. 
The intensity is normalized by the background intensity of backscattering. 

Figure S5 (b,c,d,e) shows the backscattering cones for 47, 70, 140 and 280; x1010 Np 

ml-1], inside are displayed the values of klT, lT, klT* and lT* extracted by this method. 

Notice that for 140 and 280; x1010 Nps ml-1, low enhancement factors are observed in 

the backscattering cones. This fact could be caused by the total internal reflection of 

coherently backscattered photons in the input interface sample-silica. The latter would 



have an important connotation. Notice that for 140 and 280; x1010 Nps ml-1, the 

effective refractive index (enhanced), that "feels" the coherently backscattered photons, 

is much higher than the silica refractive index. So, the coherently backscattered photons 

at large angles would suffer a total internal reflection at the interface sample-silica. 

Therefore, only the incoherently backscattered photons, that “feel” a classical refractive 

index, would be detected for large angles. In this way, the background intensity 

(backscattering) must increase. For 280x1010 Nps ml-1, half angle of the coherent 

backscattering cone, without the correction by internal reflection, would be ~220 mrad. 

However, the angle of total internal reflection in the interface sample-silica would be 

~380 mrad. Therefore, a significant part of the coherently backscattered light would be 

forced to come back to the sample, contributing consequently to the background of 

backscattering.   A simple model for internal reflection was taken account for correction 

of lT values.5 The effective refractive index should increase at least as 

 for d near to zero, since the photon would interact an average 0 (𝑛𝑒𝑓𝑓0 = 1 + 𝛾0(𝑛𝑒𝑓𝑓 ‒ 1))

times with the same particles, atoms or molecules. Notice that, the proposed increase in 

the effective refractive index is connected with the known Kramers-Kronig relations, 

due to . Thereby, . The enhanced 𝛼𝐹𝐹0(𝜔) = 𝛾0 × 𝛼0(𝜔) 𝑛𝑒𝑓𝑓0(𝜔0) = 1 + 𝛾0(𝑛𝑒𝑓𝑓(𝜔0) ‒ 1)

effective refractive indexes at d near to zero (neff0), extracted by scaling through the 

enhanced absorption factor , are also displayed inside (fig. S5). (𝑛𝑒𝑓𝑓0 = 1 + 𝛾0(𝑛𝑒𝑓𝑓 ‒ 1))

This effect could be interpreted such that the photons interact an average of 0 times (at 

d near to zero) with the same particles, atoms, or molecules, leading to an increase of 0 

times in the elastic polarization of valence electrons to virtual states. Figure S6 shows 

the evolution of lT0, lT and lT* as a function of Nps]. As can be observed, lT0 shows a 

linear decay in Nps] (lT0  Nps]-1). However, lT and lT* decay more slowly. This fact 

5 Ad Lagendijk, Rob Vreeker, Pedro de Vries, Physics Letters A 1989, Vol. 136 (1-2), 81-88.  



could mean that, effectively, a neff0 correction is required and that neff0 must increase 

even more just at d=0 (input interface silica-sample). Notice that, the ls0, lT0 and FF0 are 

average values determined in the region at d near to zero, not at d=0, where these values 

must increase even more. Consequently, a further increase in the effective refractive 

index must be expected at d=0. Additionally, the enhanced factor of coherent 

backscattering cone is lower than expected (1.8) for [Nps] ≥ 140x1010 Nps ml-1, which 

could introduce an error in estimating the backscattering cone angle. By this reason neff0 

values have been succeeded by (>) sign in the figure S5 b-e. In this way, a new 

theoretical approach would be required in order to consider the total internal reflection, 

by localization effects, in the input interface sample-silica.

Figure S 6. Evolution of lT0, lT and lT* as a function of Nps]. The blue and red dotted 
lines represent the fitting with inverse functions (Nps]-1). The red dotted line shows the 

expected  dependence for [Nps] ≥ 47x1010 Nps ml-1. 𝑙𝑇 ∗ ∝ [𝑁𝑝𝑠] ‒ 1


