Electronic Supplementary Information for

Large-Scale Assembly of Highly Sensitive Si-based Flexible Strain

Sensor for Human Motion Monitoring

Bing-Chang Zhang,^a Hui Wang,^{*a} Yu Zhao,^b Fan Li,^a Xue-Mei Ou,^a Bao-Quan Sun^b and

Xiao-Hong Zhang*ab

^a Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China.

E-mail: <u>xhzhang@mail.ipc.ac.cn</u>; <u>wanghui@mail.ipc.ac.cn</u>.

^b Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215123, Suzhou, Jiangsu, China.

Supplementary figures

Fig. S1 The SEM image of the as-synthesized silicon nanowires.

Fig. S2 The SEM image of silicon nanowires after removing the outside oxide shell with hydrofluoric acid solution.

Fig. S3 (a) XRD patterns of the as-synthesized silicon nanowires. The diffraction peaks were determined referring to JCPDS 77-2107 and JCPDS 02-0709. (b) A typical HRTEM image of silicon nanowires after removing the outside oxide shell with hydrofluoric acid solution.

Fig. S4. The plot of the relative resistance change $(\Delta R/R_0)$ versus cubic strain (ε^3) .

Fig. S5 The relative resistance change versus dynamic stretching from 0 strain to the stretchable limit (about 66% in this sample). Indeed, we also found the maximum stretchable limit could be 70% on other devices.

Fig. S6 Plot of the width of the gap in Fig. 4 of the main text versus the exerted strain.