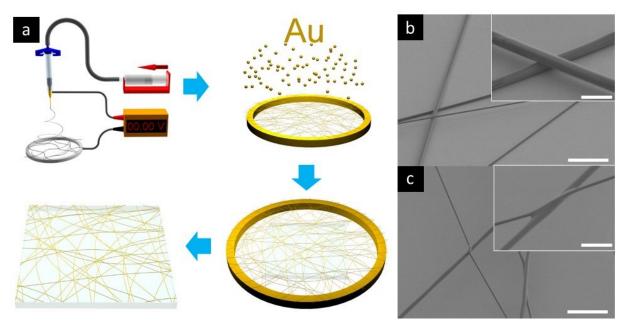
Supporting Information

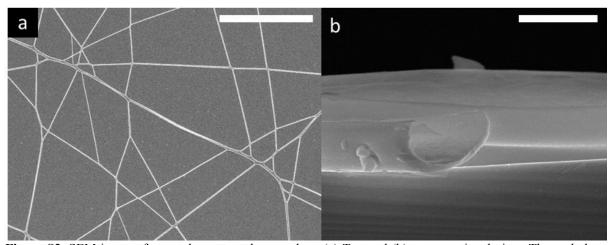

High-Performance, Robust Metal Nanotrough-Embedded Transparent Conducting Film for Wearable Touch Screen Panel Application

Hyeon-Gyun Im,^a[†] Byeong-Wan Ahn,^b[†] Jungho Jin,^c Junho Jang,^a Young-Geun Park,^b Jang-Ung Park^b* and Byeong-Soo Bae^a*

^aDepartment of Materials Science & Engineering (MSE), Korea Advanced Institute of Science & Technology (KAIST), KOREA

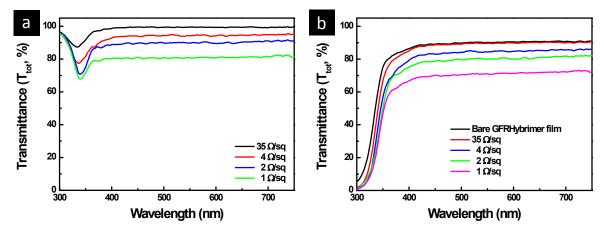
^bSchool of Materials Science & Engineering (MSE), Ulsan National Institute of Science & Technology (UNIST), KOREA

°School of Materials Science & Engineering (MSE), University of Ulsan, KOREA



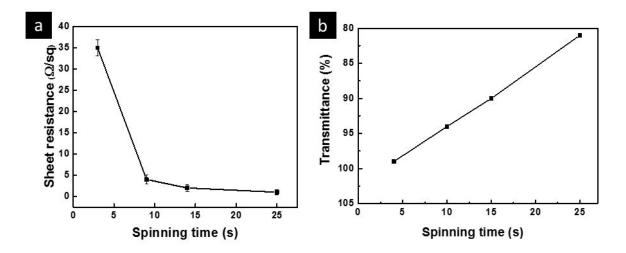
Fabrication of the metal nanotrough networks on glass for subsequent transfer process

Figure S1. (a) Fabrication procedure of the metal nanotrough networks on glass. (b, c) SEM images for electrospun polymer templates; (b) as-spun and (c) annealed (The insets represent magnified images). The scale bars are $10 \mu m$ (The inset scale bars are $2 \mu m$).

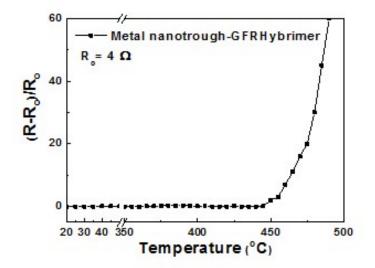

A water-soluble polymer (PVP) was electro-spun on an Al frame; diameter of PVP template is ca. 1 µm. The use of conductive Al frame allows that generation of electric field between nozzle and Al frame, so one could form random/aligned free-standing PVP network. Maximum size of the Al frame used in this work is 4 in. As mentioned in Experimental Section, electro-spun polymer template was annealed at 150 °C for 1 h to promote welding of individual fibers. Note that the junctions of polymer fibers were welded as revealed in Figure S1c.

SEM analysis of the metal nanotrough network on a glass

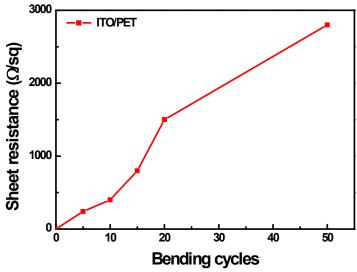
Figure S2. SEM images for metal nanotrough on a glass. (a) Top and (b) cross-sectional view. The scale bars are 50 and 1 µm, respectively.


The metal nanotrough network is continuous. The diameter of the metal nanotrough is ca. 1 µm.

Optical transmittance spectra of the metal nanotrough-GFRHybrimer films


Figure S3. Total transmittance spectra of the metal nanotrough-GFRHybrimer films with varying R_{sh} values. (a) Base-line with bare GFRHybrimer film, and (b) ambient air.

Opto-electrical performance of the metal nanotrough-GFRHybrimer films according to the electrospinning time


Figure S4. Sheet resistance (a) and transmittance (b) of metal nanotrough-GFRHybrimer films as a function of spinning time.

Note that the surface coverage of the metal nanotrough network can be controlled by electro-spinning time of polymer template. A longer electro-spinning time results in a denser metal nanotrough network. As increasing electro-spinning time, the metal nanotrough-GFRHybrimer films exhibit better electrical uniformity.

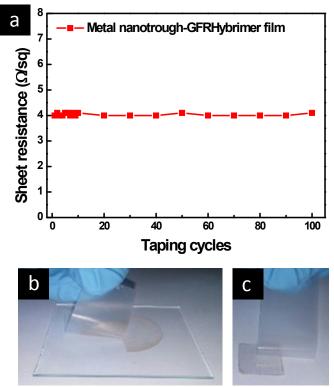
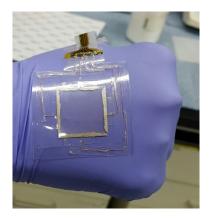

Thermal stability of the metal nanotrough-GFRHybrimer film with elevating temperature

Figure S5. Normalized R_{sh} values of the metal nanotrough-GFRHybrimer film with elevating temperature (ramp rate = 5 °C min⁻¹). R_{sh} was maintained up to 440 °C and then increased rapidly.

Mechanical stability of the reference ITO/PET


Figure S6. Bending test result of commercial ITO/PET sample. Bending radius is 1 mm.

Adhesion stability of the metal nanotrough-GFRHybrimer film

Figure S7. (a) 3M tape test result of the metal nanotrough-GFRHybrimer film. Test images of (b) the metal

nanotrough on glass, and (c) the metal nanotrough-GFRHybrimer film. Note that the metal nanotrough on glass sample shows delamination of TCE network after taping.

Touch screen panel device

Figure S8. Fabricated touch screen panel on a back of a human hand.

Figure S9. Photographs for the operation of the TSP device integrated on the wristband. Written characters are "UNIST".