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1.  Extended Discussion

To investigate the high mobility of C13 and the nickel catalyst, the Lindemann 

index, δ,1 was calculated according to the following equation,
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where N is the number of atoms in the relevant system, rij is the instantaneous 

distance between atoms i and j, and the brackets denote thermal averaging over a 

finite interval of time. The Lindemann index has been used on a number of occasions 

as an accurate probe of the catalyst phase in the context of the nucleation and growth 

of graphene and carbon nanotube.2-5 It is typically accepted that δ = 0.1 marks the 

transition between the solid and liquid phases.6 Fig. S5 shows that in the two systems 

both the carbon clusters and the nickel catalyst rapidly undergo a solid to liquid phase 

transition upon thermal annealing, as indicated by the rapid increase of δ. Thus, they 

exhibit significantly high mobility, which is responsible for the quick diffusion and 

further aggregation of carbon clusters.
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Fig. S1 Optimized geometries of C13-G and C13-H on Ni(111) surface.



Fig. S2 Final structures of trajectories A-J@C13 following 400 ps QM/MD simulation 

for the Ni(111)+C13 system. Brown and cyan spheres represent Ni and C atoms, 

respectively. The preexisting C13 is highlighted in blue.



Fig. S3 Final structures of trajectories A-J@2C13 following 350 ps QM/MD 
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Fig. S4 Average polygonal carbon ring populations formed during graphene growth 
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Fig. S5 Averaged δ value of (a) the C13 clusters and (b) the nickel catalyst in 

Ni(111)+C13 and Ni(111)+2C13 systems, respectively.

Fig. S6 Total Mermin free energy as a function of simulation time in Ni(111)+2C13 

system.



Table S1. Formation energy of C13-G and C13-H on Ni(111) surface.

C13-G C13-H

DFTa 10.55 12.52

SCC-DFTB 14.11 15.85

a Ref. 22

Table S2. The effect of Te on the crystalline features of the Ni(111) surface.

Te (K) a (Å) b (Å) c (Å) Interlayer distance (Å) Ni-Ni bond length (Å)

initial 14.951 14.951 6.104 2.035 2.492

500 14.934 14.934 6.442 2.147 2.489

1000 14.934 14.934 6.454 2.151 2.489

1180 14.934 14.934 6.457 2.152 2.489

1500 14.934 14.934 6.464 2.155 2.489

2000 14.934 14.934 6.480 2.160 2.489

3000 14.934 14.934 6.520 2.173 2.489

5000 14.934 14.934 6.606 2.202 2.489

6000 14.854 14.894 8.032 2.677 2.478/2.482

7000 14.926 14.855 7.081 2.360 2.488/2.476

10000 14.995 14.827 9.295 3.098 2.499/2.471


