Electronic Supplementary Information (ESI) for paper: "Nanoscale Stabilization of Zintl Compounds: 1D Ionic Li-P Double Helix Confined Inside a Carbon Nanotube"

Alexander S. Ivanov,*[‡] Tapas Kar and Alexander I. Boldyrev

Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States

Corresponding Author

*E-mail: ivanova@ornl.gov (A.S.I.)

Present Address

[‡]Oak Ridge National Laboratory, Chemical Sciences Division, 1 Bethel Valley Rd., Oak Ridge, Tennessee, 37831-6119, United States

Fig. S1. Projected density of states (DOS) and band structure for LiP@SWCNT(10,0).

Fig. S2. Projected density of states (DOS) and band structure for LiP@SWCNT(15,0).

Fig. S3. End-on and side views of the fully optimized structure of LiP@SWCNT(13,0) nanocomposite as well as projected density of electronic states for the LiP@SWCNT(13,0) system (left), for the stand-alone LiP double-helical chain (center), and the carbon nanotube (right).

-4 -2 Energy, eV

-6

0 2

4

Compound	DDhond	I: Dhondlongth	I: I: hand langth
Compound	length, Å	Å	Å
LiP@SWCNT(12,0) ^a	2.19	3.69-3.70	3.49-3.59
Free standing LiP ^a	2.27	3.15	2.81
$P2_1/c \ LiP$ [lithium phosphide] ^b	2.20-2.22	3.36-3.39	2.97-3.01
P2 ₁ /c BaP ₂ [barium phosphide] ^c	2.20-2.25	-	-
$P2_1/c \ SrP_2 \ [strontium phosphide]^c$	2.20-2.25	-	-
Im-3m Li [lithium metal] ^d	-	-	3.04

Table S1. P-P, Li-P, and Li-Li bond lengths (Å) in the corresponding compounds.

^{*a*}Theoretically calculated structures obtained in this work. ^{*b*}Experimental structure [Hönle, W.; von Schnering, H.-G. *Kristallogr.* 1981, 155, 307–314]. ^{*c*}Experimental structures [Dolyniuk, J.-A.; He, H.; Ivanov, A. S.; Boldyrev, A. I.; Bobev, S.; Kovnir, K. *Inorg. Chem.* 2015, 54, 8608–8616]. ^{*d*}The closet Li-Li separation distance in the most stable form for lithium metal at 298 K [M. R. Nadler, C. P. Kempfer, *Anal. Chem.* 1959, 31, 2109]

Table S2. Calculated Bader charges for LiP@SWCNT(10,0)

Li 0.7983 Li 0.7983 Li 0.8086 Li 0.8086 Li 0.8093 Li 0.8093 Li 0.7983 Li 0.7983 Р -0.3037 Ρ -0.3037 Ρ -0.645 Ρ -0.645 Ρ -0.6547 Ρ -0.6547 Ρ -0.2959 Ρ -0.2959 С -0.0734 С -0.0734 С 0.0115 С 0.0115 С -0.1144 с -0.1144 С 0.0069 С 0.0069 С -0.1014 с -0.1014 С 0.0206 С 0.0206 с -0.1319 с -0.1319 с 0.0438 С 0.0438 с -0.1176 С -0.1176 с 0.0525 С 0.0525 с -0.1475 с -0.1475 С 0.0484 с 0.0484 С -0.1129 с -0.1129 С 0.0521 с 0.0521 С -0.0739 с -0.0739 с 0.0747 С 0.0747 с -0.0893 С -0.0893 с 0.022 С 0.022 с -0.1082

С	-0.1082
С	-0.1458
С	-0.1458
С	-0.0939
С	-0.0939
С	0.0667
С	0.0667
С	-0.1229
С	-0.1229
С	0.0505
С	0.0505
С	-0.0806
С	-0.0806
С	-0.0064
С	-0.0064
С	-0.073
С	-0.073
С	0.052
С	0.052
С	-0.076
С	-0.076
С	-0.0189
С	-0.0189
С	-0.0925
С	-0.0925
С	-0.0004
С	-0.0004
С	-0.0727
С	-0.0726
С	0.0562
С	0.0562
С	-0.0616
С	-0.0616
С	0.0709
С	0.0709
С	-0.1362
С	-0.1362
С	0.0316
С	0.0316
С	0.0063
С	0.0063
С	0.0694
С	0.0694

Table S3.	Calculated Bad	er charges for 1	LiP@SWCN	T(15,0)	

Li	0.8437
Li	0.8543
Li	0.8477
Li	0.8558
Li	0.8375
Li	0.8488
Li	0.8422
Li	0.8369
Р	-0.554
Р	-0.7574
Р	-0.6836
Р	-0.5177
Р	-0.6042
Ρ	-0.7198
Р	-0.6216
Ρ	-0.7955
С	0.0127
С	0.0482
С	-0.0252
С	-0.0671
С	0.0696
С	0.0711
С	-0.0689
с	-0.0789
с	0.0116
С	0.0295
С	-0.0779
С	-0.0752
С	0.0259
С	0.0206
С	-0.0729
С	-0.0651
С	0.0795
С	0.0869
С	-0.0868
С	-0.1059
С	0.0532
С	0.0496
С	0.0776
С	-0.0955

С	0.0607
с	0.0645
с	0.069
с	-0.079
С	0.0574
с	0.056
С	-0.0898
С	-0.1038
С	0.04
С	0.0142
С	-0.1184
С	-0.1341
С	0.0442
С	0.0492
С	-0.0593
С	-0.0589
с	0.0666
с	0.0687
с	-0.0669
С	-0.0694
С	0.0449
с	0.0458
с	-0.0542
С	-0.0559
с	0.0449
С	0.0457
С	-0.0677
С	-0.0687
С	0.0602
С	0.0605
С	-0.0311
С	-0.033
С	-0.003
С	-0.0025
С	-0.0083
С	-0.01
с	0.0657
С	0.0694
С	-0.0718
с	-0.0748
С	0.0498
с	0.0411
с	-0.0975
С	-0.1216

С	0.0286
С	0.0361
С	-0.1391
с	-0.1159
С	0.0504
с	0.0658
с	-0.0705
С	-0.0668
С	0.0738
С	0.0276
С	-0.1033
С	-0.09
С	-0.1167
С	0.0418
С	-0.1106
С	-0.076
С	-0.0944
С	0.0621
С	-0.0955
С	-0.059
С	0.0648
С	0.0258
С	-0.092
С	-0.0845
С	0.0581
С	0.0433
С	-0.0727
С	-0.0715
С	0.0378
С	0.0363
С	-0.057
С	-0.0589
С	0.0742
С	0.0244
С	-0.0367
С	0.0101
С	0.0296
С	0.0276
С	-0.0733
С	-0.0738
с	0.0419
С	0.0401
С	-0.052
С	-0.0522

- C 0.0412
- C 0.0386
- C -0.0315
- C -0.0319
- C 0.0237
- C 0.022
- C -0.0353
- C -0.0334