_

Supporting Information

CoS_{2x}Se_{2(1-x)} Nanowire Array: An Efficient Ternary Electrocatalyst for Hydrogen Evolution Reaction

Kaili Liu^{a,b,c†}, Fengmei Wang^{a,b†}, Kai Xu^{a,b}, Tofik Ahmed Shifa^{a,b}, Zhongzhou Cheng^a, Xueying Zhan^a and Jun He^a*

^aCAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China.

^bUniversity of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China.

^cSino-Danish Center for Education and Research, Beijing, 100190, China.

⁺ These authors contributed equally to this work.

Synthesis of CoS₂ NWs

The CFs, onto which CoO NWs grew, was placed at the downstream side of the tube furnace and 0.5 g S powder was placed at the upstream side (the distance of CF and S powder is 22 cm). To create an oxygen-free environment, the tube furnace was flushed three times under a 100 sccm Ar flow. After flushed with Ar, the tempratures of the CoO NWs zone and S powder zone were quickly rasied to 450 °C and 125 °C respectively in 20 min and lasted for 90 min. During the whole process, the flow of Ar was kept at a rate of 100 sccm.

Synthesis of CoSe₂ NWs

The CFs, onto which CoO NWs grew, was placed at the downstream side of the tube furnace and 0.5 g Se powder was placed at the upstream side (the distance of CF and Se powder is 22 cm). To create an oxygen-free environment, the tube furnace was flushed three times under a 100 sccm Ar flow. After flushed with Ar, the tempratures of the CoO NWs zone and Se powder zone were quickly rasied to 450 °C and 300 °C respectively in 20 min and lasted for 90 min. During the whole process, the flow of Ar was kept at a rate of 100 sccm.

Fig. S1. TEM image of CoS_2 NWs (a), $CoSe_2$ NWs (b) and $CoS_{2x}Se_{2(1-x)}$ NWs (c).

Fig. S2. XRD patterns of CoS₂ NWs and CoSe₂ NWs.

Fig. S3 XPS spectra of $CoS_{2x}Se_{2(1-x)}NWs/CF$.

Fig. S4. Polarization curves of different tenary samples with various elemental components.

_

Fig. S5. Cyclic voltammograms (CV) curves of different catalysts: $CoS_{2x}Se_{2(1-x)}$ NWs (a), $CoSe_2$ NWs (b) and CoS_2 NWs (c) at scan rates of 20mv/s-200 mv/s.

Fig. S6.Low magnificent (a) and high magnificent (b) TEM images of CoS_{2x}Se_{2(1-x)} NWs after 1000 potential cycles.