Electronic Supplementary Information Medium-Sized Au₄₀(SR)₂₄ and Au₅₂(SR)₃₂ Nanoclusters with Distinct Gold-Kernel Structure and Spectroscopy

Features

Wen Wu Xu, Ya Dong Li, Yi Gao*, Xiao Cheng Zeng* *Corresponding authors. E-mail: gaoyi@sinap.ac.cn, xzeng1@unl.edu

Figure S1. Formation of Au_{20} kernel of $Au_{28}(SR)_{20}$ and $Au_{30}S(SR)_{18}$ (a), and Au_{28} kernel of $Au_{36}(SR)_{24}$ (b). The Au atoms marked with the same number and color are fused together.

Figure S2. Two orthogonal views of multi-shell Au kernels of $Au_{102}(SR)_{44}$ (a) and $Au_{130}(SR)_{50}$ (b). All the structures displayed possess Ino-decahedral (D_{5h}) symmetry. The shells are shown in different colors.

Figure S3. (a) Formation of Au_{23} kernel of $Au_{38}(SR)_{24}$ by fusing two icosahedral Au_{13} . The Au atoms marked with the same color are fused together. (b) Two orthogonal views of multi-shell Au kernel of $Au_{133}(SR)_{52}$. The icosahedral Au_{13} (icosahedral Au_{13} is also the kernel of $Au_{25}(SR)_{18}$) and Au_{55} structures are displayed. The shells are shown in different colors.

Figure S4. The theoretical (black) and experimental (red) powder X-ray diffraction (XRD) curves of $Au_{25}(SR)_{18}$ (a) and $Au_{38}(SR)_{24}$ (b). The experimental XRD curves of $Au_{25}(SR)_{18}$ and $Au_{38}(SR)_{24}$ are adapted from refs. 1 and 2, respectively.

Supplemental References

- 1. Iwasa, T.; Nobusada, K. J. Phys. Chem. C 2007, 111, 45.
- Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutie'rrez-Wing, C.; Ascensio, J.; Jose-Yacama'n, M. J. J. Phys. Chem. B 1997, 101, 7885.